On the semilocal convergence of a three steps Newton-type iterative process under mild convergence conditions

被引:19
|
作者
Hernandez-Veron, M. A. [1 ]
Martinez, Eulalia [2 ]
机构
[1] Univ La Rioja, Dept Math & Computat, Logrono 26004, Spain
[2] Univ Politecn Valencia, Inst Matemat Pura & Aplicada, Valencia 4602, Spain
关键词
Nonlinear equations; Order of convergence; Iterative methods; Semilocal convergence; Hammerstein equation;
D O I
10.1007/s11075-014-9952-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the semilocal convergence for an alternative to the three steps Newton's method with frozen derivative is presented. We analyze the generalization of convergence conditions given by w-conditioned non-decreasing functions instead of the first derivative Lipschitz or Holder continuous given by other authors. A nonlinear integral equation of mixed Hammerstein type is considered for illustrating the new theoretical results obtained in this paper, where previous results can not be satisfied.
引用
收藏
页码:377 / 392
页数:16
相关论文
共 50 条
  • [1] On the semilocal convergence of a three steps Newton-type iterative process under mild convergence conditions
    M. A. Hernández-Verón
    Eulalia Martínez
    Numerical Algorithms, 2015, 70 : 377 - 392
  • [2] ON THE SEMILOCAL CONVERGENCE OF A NEWTON-TYPE METHOD OF ORDER THREE
    Argyros, Ioannis K.
    Hilout, Said
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2010, 17 (01): : 1 - 27
  • [3] On the convergence of Newton-type methods under mild differentiability conditions
    Argyros, Ioannis K.
    Hilout, Said
    NUMERICAL ALGORITHMS, 2009, 52 (04) : 701 - 726
  • [4] On the convergence of Newton-type methods under mild differentiability conditions
    Ioannis K. Argyros
    Saïd Hilout
    Numerical Algorithms, 2009, 52 : 701 - 726
  • [5] Generalized convergence conditions for the local and semilocal analyses of higher order Newton-type iterations
    Singh, Harmandeep
    Sharma, Janak Raj
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (08):
  • [6] Generalized convergence conditions for the local and semilocal analyses of higher order Newton-type iterations
    Harmandeep Singh
    Janak Raj Sharma
    Computational and Applied Mathematics, 2023, 42
  • [7] Newton-type methods of high order and domains of semilocal and global convergence
    Ezquerro, J. A.
    Hernandez, M. A.
    Romero, N.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 214 (01) : 142 - 154
  • [8] Semilocal convergence of the secant method under mild convergence conditions of differentiability
    Hernández, MA
    Rubio, MJ
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (3-4) : 277 - 285
  • [9] Extended local convergence for Newton-type solver under weak conditions
    Argyros, Ioannis K.
    George, Santhosh
    Senapati, Kedarnath
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2021, 66 (04): : 757 - 768
  • [10] Convergence analysis for single point Newton-type iterative schemes
    Argyros, Ioannis K.
    George, Santhosh
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2020, 62 (1-2) : 55 - 65