Proximal Gradient-Type Algorithms for a Class of Bilevel Programming Problems

被引:1
|
作者
Li, Dan [1 ]
Chen, Shuang [1 ]
Pang, Li-Ping [2 ]
机构
[1] Dalian Univ, Informat & Engn Coll, Dalian 116622, Peoples R China
[2] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
关键词
Proximal point; nonsmooth optimization; bilevel programming; BUNDLE METHOD; DECOMPOSITION; OPTIMIZATION;
D O I
10.1142/S0217595921500391
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A class of proximal gradient-type algorithm for bilevel nonlinear nondifferentiable programming problems with smooth substructure is developed in this paper. The original problem is approximately reformulated by explicit slow control technique to a parameterized family function which makes full use of the information of smoothness. At each iteration, we only need to calculate one proximal point analytically or with low computational cost. We prove that the accumulation iterations generated by the algorithms are solutions of the original problem. Moreover, some results of complexity of the algorithms are presented in convergence analysis. Numerical experiments are implemented to verify the efficiency of the proximal gradient algorithms for solving this kind of bilevel programming problems.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] AN IMPLICIT GRADIENT-TYPE METHOD FOR LINEARLY CONSTRAINED BILEVEL PROBLEMS
    Tsaknakis, Ioannis
    Khanduri, Prashant
    Hong, Mingyi
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 5438 - 5442
  • [2] Balanced programming: gradient-type methods
    Avt Telemekh, 8 (125-137):
  • [3] IMPROVED GRADIENT-TYPE ALGORITHMS FOR ZERO TERMINAL GRADIENT OPTIMAL-CONTROL PROBLEMS
    KUO, CF
    KUO, CY
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1987, 109 (04): : 355 - 362
  • [4] A Class of Gradient-type Methods with Perturbations
    Li, Meixia
    COMPUTATIONAL MATERIALS SCIENCE, PTS 1-3, 2011, 268-270 : 904 - 907
  • [5] On Linear Convergence of Gradient-Type Minimization Algorithms
    M. Gaviano
    D. Lera
    Journal of Optimization Theory and Applications, 1998, 98 : 475 - 487
  • [6] On linear convergence of gradient-type minimization algorithms
    Gaviano, M
    Lera, D
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 98 (02) : 475 - 487
  • [7] Numerical solution of a class of bilevel programming problems
    Strekalovsky A.S.
    Orlov A.V.
    Malyshev A.V.
    Numerical Analysis and Applications, 2010, 3 (2) : 165 - 173
  • [8] Proximal Gradient Method for Solving Bilevel Optimization Problems
    Yimer, Seifu Endris
    Kumam, Poom
    Gebrie, Anteneh Getachew
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2020, 25 (04)
  • [9] Error Stability Properties of Generalized Gradient-Type Algorithms
    M. V. Solodov
    S. K. Zavriev
    Journal of Optimization Theory and Applications, 1998, 98 : 663 - 680
  • [10] Error stability properties of generalized gradient-type algorithms
    Solodov, MV
    Zavriev, SK
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 98 (03) : 663 - 680