Parallel time and space upper-bounds for the subset-sum problem

被引:12
|
作者
Sanches, C. A. A. [1 ]
Soma, N. Y. [1 ]
Yanasse, H. H. [2 ]
机构
[1] ITA, BR-12228900 Sao Jose Dos Campos, SP, Brazil
[2] INPE, Sao Jose Dos Campos, Brazil
基金
巴西圣保罗研究基金会;
关键词
Subset-sum problem; Knapsack problem; Parallel algorithms; Dynamic programming; Upper-bound complexity;
D O I
10.1016/j.tcs.2008.06.051
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Three new parallel scalable algorithms for solving the Subset-Sum Problem in O(n/p(c - w(min))) time and O(n + c) space in the PRAM model are presented, where n is the number of objects, c is the capacity, w(min) is the smallest weight and p is the number of processors. These time and space bounds are better than the direct parallelization of Bellman's algorithm, which was the most efficient known result. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:342 / 348
页数:7
相关论文
共 50 条
  • [1] Parallel solution of the subset-sum problem: an empirical study
    Bokhari, Saniyah S.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2012, 24 (18): : 2241 - 2254
  • [2] A low-space algorithm for the subset-sum problem on GPU
    Curtis, V. V.
    Sanches, C. A. A.
    COMPUTERS & OPERATIONS RESEARCH, 2017, 83 : 120 - 124
  • [3] Priority algorithms for the Subset-Sum problem
    Ye, Yuli
    Borodin, Allan
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2007, 4598 : 504 - +
  • [4] Quantum Algorithms for the Subset-Sum Problem
    Bernstein, Daniel J.
    Jeffery, Stacey
    Lange, Tanja
    Meurer, Alexander
    POST-QUANTUM CRYPTOGRAPHY, PQCRYPTO 2013, 2013, 7932 : 16 - 33
  • [5] Integer factorization as subset-sum problem
    Hittmeir, Markus
    JOURNAL OF NUMBER THEORY, 2023, 249 : 93 - 118
  • [6] Priority algorithms for the subset-sum problem
    Yuli Ye
    Allan Borodin
    Journal of Combinatorial Optimization, 2008, 16 : 198 - 228
  • [7] Priority algorithms for the subset-sum problem
    Ye, Yuli
    Borodin, Allan
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2008, 16 (03) : 198 - 228
  • [8] A FAST APPROXIMATION ALGORITHM FOR THE SUBSET-SUM PROBLEM
    GENS, G
    LEVNER, E
    INFOR, 1994, 32 (03) : 143 - 148
  • [9] An improved balanced algorithm for the subset-sum problem
    Curtis, V. V.
    Sanches, C. A. A.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2019, 275 (02) : 460 - 466
  • [10] New algorithm for dense subset-sum problem
    Chaimovich, M
    ASTERISQUE, 1999, (258) : 363 - 373