Fabrication, characterization, and optical properties of gold nanoparticle/porous alumina composites: The nonscattering Maxwell-Garnett limit

被引:250
|
作者
Hornyak, GL [1 ]
Patrissi, CJ [1 ]
Martin, CR [1 ]
机构
[1] COLORADO STATE UNIV,DEPT CHEM,FT COLLINS,CO 80523
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 1997年 / 101卷 / 09期
关键词
D O I
10.1021/jp962685o
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have been exploring the optical properties of nanoscopic gold particles prepared by electrochemically depositing Au within the pores of nanoporous alumina membranes. Maxwell-Garnet (MG) effective medium theory has been used as a guide for modeling the optical properties of these Au nanoparticle/alumina membrane composites. MG theory is, however, rigorously applicable only in the limit of metal nanoparticles with infinitesimally small diameters. As a result, the position of the plasmon resonance absorption predicted theoretically using MG theory was always blue shifted relative to the position of the experimental absorption band. The smallest diameter particles investigated in this prior work had diameters of 60 nm. Au nanoparticles with smaller diameters (52 nm down to 16 nm) were prepared, and the optical properties of composites containing these nanoparticles are described here. The lambda(max) values for the smallest diameter particles are essentially identical with the values predicted by MG theory. Hence, we have succeeded in preparing Au nanoparticles that experimentally achieve the MG-predicted plasmon resonance absorption limit.
引用
收藏
页码:1548 / 1555
页数:8
相关论文
共 34 条
  • [1] Dynamical Maxwell-Garnett optical modeling of nanogold porous alumina composites: Mie and kappa influence on absorption maxima
    Hornyak, GL
    Patrissi, CJ
    Martin, CR
    Valmalette, JC
    Dutta, J
    Hofmann, H
    NANOSTRUCTURED MATERIALS, 1997, 9 (1-8): : 575 - 578
  • [2] Dynamical Maxwell-Garnett optical modeling of nanogold-porous alumina composites: Mie and kappa influence on absorption maxima
    Dept. of Chemistry, Colorado State University, Fort Collins, CO 80523, United States
    Nanostruct Mater, 1-8 (575-578):
  • [3] Modeling of the solvent processing dynamics of aerogel/gold nanoparticle composites using modified Maxwell-Garnett theory
    Mengle, Kelsey
    Richardson, John
    Kegerreis, Jeb
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [4] OPTICAL PROPERTIES OF A MAXWELL-GARNETT COMPOSITE MEDIUM WITH NONSPHERICAL SILVER INCLUSIONS
    Moiseev, S. G.
    RUSSIAN PHYSICS JOURNAL, 2009, 52 (11) : 1121 - 1127
  • [5] The experimental dielectric function of porous anodic alumina in the infrared region; A comparison with the Maxwell-Garnett model
    Wackelgard, E
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1996, 8 (23) : 4289 - 4299
  • [6] MAXWELL-GARNETT ESTIMATES OF THE EFFECTIVE PROPERTIES OF A GENERAL-CLASS OF DISCRETE RANDOM COMPOSITES
    LAKHTAKIA, A
    WEIGLHOFER, WS
    ACTA CRYSTALLOGRAPHICA SECTION A, 1993, 49 : 266 - 269
  • [7] Novel Method of Preparation of Gold-Nanoparticle-Doped TiO2 and SiO2 Plasmonic Thin Films: Optical Characterization and Comparison with Maxwell-Garnett Modeling
    Pedrueza, Esteban
    Valdes, Jose L.
    Chirvony, Vladimir
    Abargues, Rafael
    Hernandez-Saz, Jesus
    Herrera, Miriam
    Molina, Sergio I.
    Martinez-Pastor, Juan P.
    ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (18) : 3502 - 3507
  • [8] Fabrication of CdSe nanocrystals using porous anodic alumina and their optical properties
    Laatar, Fakher
    Hassen, Mohamed
    Amri, Chohdi
    Laatar, Fekri
    Smida, Alia
    Ezzaouia, Hatem
    JOURNAL OF LUMINESCENCE, 2016, 178 : 13 - 21
  • [9] Fabrication, characterization and gas sensing properties of gold nanoparticle and calixarene multilayers
    İNCI ÇAPAN
    ASEEL K HASSAN
    RAJAA R ABBAS
    Bulletin of Materials Science, 2017, 40 : 31 - 36
  • [10] On the Development of Optical Properties during Thermal Coarsening of Gold Nanoparticle Composites
    King, Shirin R.
    Gentle, Angus R.
    Cortie, Michael B.
    McDonagh, Andrew M.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (22): : 12098 - 12105