Nonlinear Mixed-Effects Modeling Programs in R

被引:30
|
作者
Stegmann, Gabriela [1 ]
Jacobucci, Ross [2 ]
Harring, Jeffrey R. [3 ]
Grimm, Kevin J. [1 ]
机构
[1] Arizona State Univ, Tempe, AZ USA
[2] Univ Notre Dame, Notre Dame, IN 46556 USA
[3] Univ Maryland, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
nonlinear mixed-effects models; R software; mixed-effects model functions in R; mixed-effects modeling programs in R; MAXIMUM-LIKELIHOOD;
D O I
10.1080/10705511.2017.1396187
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this software review, we provide a brief overview of four R functions to estimate nonlinear mixed-effects programs: nlme (linear and nonlinear mixed-effects model), nlmer (from the lme4 package, linear mixed-effects models using Eigen and S4), saemix (stochastic approximation expectation maximization), and brms (Bayesian regression models using Stan). We briefly describe the approaches used, provide a sample code, and highlight strengths and weaknesses of each.
引用
收藏
页码:160 / 165
页数:6
相关论文
共 50 条
  • [1] Generalized Linear Mixed-Effects Modeling Programs in R for Binary Outcomes
    Lee, Wooyeol
    Grimm, Kevin J.
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2018, 25 (05) : 824 - 828
  • [2] Nonlinear mixed-effects modeling of MNREAD data
    Cheung, Sing-Hang
    Kallie, Christopher S.
    Legge, Gordon E.
    Cheong, Allen M. Y.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2008, 49 (02) : 828 - 835
  • [3] Nonlinear mixed-effects modeling: Individualization and prediction
    Olofsen, E
    Dinges, DF
    Van Dongen, HPA
    AVIATION SPACE AND ENVIRONMENTAL MEDICINE, 2004, 75 (03): : A134 - A140
  • [4] An Introduction to Linear Mixed-Effects Modeling in R
    Brown, Violet A.
    ADVANCES IN METHODS AND PRACTICES IN PSYCHOLOGICAL SCIENCE, 2021, 4 (01)
  • [5] Nonlinearity detection: Advantages of nonlinear mixed-effects modeling
    Jonsson E.N.
    Karlsson M.O.
    Wade J.R.
    AAPS PharmSci, 2 (3): : 114
  • [6] Nonlinearity detection: Advantages of nonlinear mixed-effects modeling
    Jonsson, EN
    Wade, JR
    Karlsson, MO
    AAPS PHARMSCI, 2000, 2 (03): : art. no. - 32
  • [7] Modeling nonlinear relationships in ERP data using mixed-effects regression with R examples
    Tremblay, Antoine
    Newman, Aaron J.
    PSYCHOPHYSIOLOGY, 2015, 52 (01) : 124 - 139
  • [9] POPULATION DIFFERENCES IN GANCICLOVIR CLEARANCE AS DETERMINED BY NONLINEAR MIXED-EFFECTS MODELING
    YUEN, GJ
    DRUSANO, GL
    FLETCHER, C
    CAPPARELLI, E
    CONNOR, JD
    LALEZARI, JP
    DREW, L
    FOLLANSBEE, S
    BUSCH, D
    JACOBSON, M
    SPECTOR, SA
    SQUIRES, K
    BUHLES, W
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1995, 39 (10) : 2350 - 2352
  • [10] Modeling Tree Diameter Growth Using Nonlinear Mixed-Effects Models
    Jiang, Lichun
    Li, Fengri
    2008 INTERNATIONAL SEMINAR ON FUTURE INFORMATION TECHNOLOGY AND MANAGEMENT ENGINEERING, PROCEEDINGS, 2008, : 636 - 639