How gravitational fluctuations degrade the high-dimensional spatial entanglement

被引:1
|
作者
Wu, Haorong [1 ,2 ]
Fan, Xilong [3 ]
Chen, Lixiang [1 ,2 ]
机构
[1] Xiamen Univ, Dept Phys, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Collaborat Innovat Ctr Optoelect Semicond & Effici, Xiamen 361005, Peoples R China
[3] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
ORBITAL ANGULAR-MOMENTUM; DECOHERENCE; LIGHT; STATES; PURITY;
D O I
10.1103/PhysRevD.106.045023
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Twisted photons carrying orbital angular momentum (OAM) are competent candidates for future interstellar communications. However, the gravitational fluctuations are ubiquitous in spacetime. Thus a fundamental question arises naturally as to how the gravitational fluctuations affect the coherence and the degree of high-dimensional OAM entanglement when twisted photons travel across the textures of curved spacetime. Here, we consider the covariant scalar Helmholtz equations and the Minkowski metric with fluctuations of Gaussian distribution and formulate analytically the equations describing the motion for twisted light in the Laguerre-Gaussian mode space. It is seen that the OAM cannot remain conserved in the presence of gravitational fluctuations. Furthermore, two-photon density matrices are derived for interstellar OAM quantum entanglement distribution, and the degree of entanglement degradation is characterized by purity and negativity. It is revealed that the higher-dimensional OAM entanglement is more susceptible to spacetime fluctuations. We believe that our findings will be of fundamental importance for the future interstellar quantum communications with twisted photons.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Imaging high-dimensional spatial entanglement with a camera
    M.P. Edgar
    D.S. Tasca
    F. Izdebski
    R.E. Warburton
    J. Leach
    M. Agnew
    G.S. Buller
    R.W. Boyd
    M.J. Padgett
    Nature Communications, 3
  • [2] Imaging high-dimensional spatial entanglement with a camera
    Edgar, M. P.
    Tasca, D. S.
    Izdebski, F.
    Warburton, R. E.
    Leach, J.
    Agnew, M.
    Buller, G. S.
    Boyd, R. W.
    Padgett, M. J.
    NATURE COMMUNICATIONS, 2012, 3
  • [3] High-dimensional mode analyzers for spatial quantum entanglement
    Oemrawsingh, SSR
    de Jong, JA
    Ma, X
    Aiello, A
    Eliel, ER
    't Hooft, GW
    Woerdman, JP
    PHYSICAL REVIEW A, 2006, 73 (03):
  • [4] Imaging High-Dimensional Spatial Entanglement with Compressive Sensing
    Howland, Gregory A.
    Howell, John C.
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2013,
  • [5] Classically high-dimensional correlation: simulation of high-dimensional entanglement
    Li, PengYun
    Zhang, Shihao
    Zhang, Xiangdong
    OPTICS EXPRESS, 2018, 26 (24): : 31413 - 31429
  • [6] High-dimensional entanglement certification
    Zixin Huang
    Lorenzo Maccone
    Akib Karim
    Chiara Macchiavello
    Robert J. Chapman
    Alberto Peruzzo
    Scientific Reports, 6
  • [7] High-dimensional entanglement certification
    Huang, Zixin
    Maccone, Lorenzo
    Karim, Akib
    Macchiavello, Chiara
    Chapman, Robert J.
    Peruzzo, Alberto
    SCIENTIFIC REPORTS, 2016, 6
  • [8] High-dimensional spatial entanglement observed with an electron multiplying CCD camera
    Tasca, Daniel S.
    Edgar, Matthew P.
    Izdebski, Frauke
    Warburton, Ryan E.
    Leach, Jonathan
    Agnew, Megan
    Buller, Gerald S.
    Boyd, Robert W.
    Padgett, Miles J.
    ELECTRO-OPTICAL REMOTE SENSING, PHOTONIC TECHNOLOGIES, AND APPLICATIONS VI, 2012, 8542
  • [9] Two-photon high-dimensional spatial entanglement:: Theory and experiment
    Neves, L
    Lima, G
    Gómez, JGA
    Monken, CH
    Saavedra, C
    Pádua, S
    MODERN PHYSICS LETTERS B, 2006, 20 (01): : 1 - 23
  • [10] Quantifying Photonic High-Dimensional Entanglement
    Martin, Anthony
    Guerreiro, Thiago
    Tiranov, Alexey
    Designolle, Sebastien
    Frowis, Florian
    Brunner, Nicolas
    Huber, Marcus
    Gisin, Nicolas
    PHYSICAL REVIEW LETTERS, 2017, 118 (11)