Comparisons of Annular Hydrodynamic Structures in 3D Fluidized Beds Using X-Ray Computed Tomography Imaging

被引:14
|
作者
Drake, Joshua B. [1 ]
Heindel, Theodore J. [1 ]
机构
[1] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
annular flow; fluidized bed; gas holdup; hydrodynamic structure; X-ray computed tomography; REACTORS;
D O I
10.1115/1.4007119
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Fluidized beds are common equipment in many process industries. Knowledge of the hydrodynamics within a fluidized bed on the local scale is important for the improvement of scale-up and process efficiencies. This knowledge is lacking due to limited observational technologies at the local scale. This paper uses X-ray computed tomography (CT) imaging to describe the local time-average gas holdup differences of annular hydrodynamic structures that arise through axisymmetric annular flow in a 10.2 cm and 15.2 cm diameter cold flow fluidized bed. The aeration scheme used is similar to that provided by a porous plate and hydrodynamic results can be directly compared. Geldart type B glass bead, ground walnut shell, and crushed corncob particles were studied at various superficial gas velocities. Assuming axisymmetry, the local 3D time-average gas holdup data acquired through X-ray CT imaging was averaged over concentric annuli, resulting in a 2D annular and time-average gas holdup map. These gas holdup maps show that four different types of annular hydrodynamic structures occur in the fluidized beds of this study: zones of (1) aeration jetting, (2) bubble coalescence, (3) bubble rise, and (4) particle shear. Changes in the superficial gas velocities, bed diameters, and bed material densities display changes in these zones. The 2D gas holdup maps provide a benchmark that can be used by computational fluid dynamic (CFD) users for the direct comparisons of 2D models, assuming axisymmetric annular flow. [DOI: 10.1115/1.4007119]
引用
收藏
页数:8
相关论文
共 50 条
  • [1] X-ray computed tomography for 3D plant imaging
    Piovesan, Agnese
    Vancauwenberghe, Valerie
    Van de Looverbosch, Tim
    Verboven, Pieter
    Nicolai, Bart
    TRENDS IN PLANT SCIENCE, 2021, 26 (11) : 1171 - 1185
  • [2] 3D imaging of fractures in carbonate rocks using X-ray computed tomography technology
    Jia, Lichun
    Chen, Mian
    Jin, Yan
    CARBONATES AND EVAPORITES, 2014, 29 (02) : 147 - 153
  • [3] 3D imaging of fractures in carbonate rocks using X-ray computed tomography technology
    Lichun Jia
    Mian Chen
    Yan Jin
    Carbonates and Evaporites, 2014, 29 : 147 - 153
  • [4] 3D chemical imaging in the laboratory by hyperspectral X-ray computed tomography
    C. K. Egan
    S. D. M. Jacques
    M. D. Wilson
    M. C. Veale
    P. Seller
    A. M. Beale
    R. A. D. Pattrick
    P. J. Withers
    R. J. Cernik
    Scientific Reports, 5
  • [5] 3D chemical imaging in the laboratory by hyperspectral X-ray computed tomography
    Egan, C. K.
    Jacques, S. D. M.
    Wilson, M. D.
    Veale, M. C.
    Seller, P.
    Beale, A. M.
    Pattrick, R. A. D.
    Withers, P. J.
    Cernik, R. J.
    SCIENTIFIC REPORTS, 2015, 5
  • [6] Evaluation of rock anisotropy using 3D X-ray computed tomography
    Yun, Tae Sup
    Jeong, Yeon Jong
    Kim, Kwang Yeom
    Min, Ki-Bok
    ENGINEERING GEOLOGY, 2013, 163 : 11 - 19
  • [7] Characterization of rock microstructure using 3D X-ray computed tomography
    Xue, Huaqing
    Xu, Ruina
    Jiang, Peixue
    Zhou, Shangwen
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2015, 47 (06): : 1073 - 1078
  • [8] Ultrafast X-ray computed tomography for the analysis of gas-solid fluidized beds
    Bieberle, Martina
    Barthel, Frank
    Hampel, Uwe
    CHEMICAL ENGINEERING JOURNAL, 2012, 189 : 356 - 363
  • [9] 3D characterization of walnut morphological traits using X-ray computed tomography
    Bernard, Anthony
    Hamdy, Sherif
    Le Corre, Laurence
    Dirlewanger, Elisabeth
    Lheureux, Fabrice
    PLANT METHODS, 2020, 16 (01)
  • [10] 3D Quantitative Mineral Characterization of Particles Using X-ray Computed Tomography
    Godinho, Jose Ricardo Assuncao
    Hassanzadeh, Ahmad
    Heinig, Thomas
    NATURAL RESOURCES RESEARCH, 2023, 32 (02) : 479 - 499