Remarks on small sets of reals

被引:7
|
作者
Bartoszynski, T [1 ]
机构
[1] Boise State Univ, Dept Math & Comp Sci, Boise, ID 83725 USA
关键词
perfectly meager; universally meager; cardinal invariants;
D O I
10.1090/S0002-9939-02-06567-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the Dual Borel Conjecture implies that o > N-1 and find some topological characterizations of perfectly meager and universally meager sets.
引用
收藏
页码:625 / 630
页数:6
相关论文
共 50 条
  • [1] A note on small sets of reals
    Bartoszynski, Tomek
    Shelah, Saharon
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (11-12) : 1053 - 1061
  • [2] Generic constructions of small sets of reals
    Brendle, J
    TOPOLOGY AND ITS APPLICATIONS, 1996, 71 (02) : 125 - 147
  • [3] A hodgepodge of sets of reals
    Miller, Arnold W.
    NOTE DI MATEMATICA, 2007, 27 : 25 - 39
  • [4] COVERING SETS OF REALS
    GARDNER, RJ
    AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (07): : 554 - 554
  • [5] REMARKS ON SMALL SETS ON THE REAL LINE
    Filipczak, Malgorzata
    Wagner-Bojakowska, Elzbieta
    REAL FUNCTIONS '07: TOPOLOGY, MEASURES, INTEGRATION AND HARMONIC ANALYSIS, 2009, 42 : 73 - 80
  • [6] Strongly dominating sets of reals
    Michal Dečo
    Miroslav Repický
    Archive for Mathematical Logic, 2013, 52 : 827 - 846
  • [7] CANTOR SETS AND FIELDS OF REALS
    Kuba, Gerald
    MATEMATICKI VESNIK, 2022, 74 (04): : 249 - 259
  • [8] Continuous images of sets of reals
    Bartoszynski, T
    Shelah, S
    TOPOLOGY AND ITS APPLICATIONS, 2001, 116 (02) : 243 - 253
  • [9] Limitwise monotonic sets of reals
    Faizrahmanov, Marat
    Kalimullin, Iskander
    MATHEMATICAL LOGIC QUARTERLY, 2015, 61 (03) : 224 - 229
  • [10] INDUCTIVELY DEFINED SETS OF REALS
    CENZER, D
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 80 (03) : 485 - 487