Thermal Stability Analysis of Lithium-Ion Battery Electrolytes Based on Lithium Bis(trifluoromethanesulfonyl)imide-Lithium Difluoro(oxalato)Borate Dual-Salt

被引:43
|
作者
Yang, Ya-Ping [1 ]
Huang, An-Chi [2 ]
Tang, Yan [2 ]
Liu, Ye-Cheng [1 ]
Wu, Zhi-Hao [2 ]
Zhou, Hai-Lin [2 ]
Li, Zhi-Ping [2 ]
Shu, Chi-Min [3 ]
Jiang, Jun-Cheng [2 ]
Xing, Zhi-Xiang [2 ]
机构
[1] Changzhou Univ, Sch Mat Sci & Engn, Changzhou 213164, Jiangsu, Peoples R China
[2] Changzhou Univ, Sch Environm & Safety Engn, Changzhou 213164, Jiangsu, Peoples R China
[3] Natl Yunlin Univ Sci & Technol, Dept Safety Hlth & Environm Engn, Touliu 64002, Yunlin, Taiwan
关键词
LiTFSI-LiODFB dual-salt carbonate electrolyte; thermal analysis; accelerated rate calorimetry; differential scanning calorimetry; autocatalytic models; apparent activation energy; ALUMINUM CORROSION; HIGH-VOLTAGE; ACCELERATING RATE; HIGH-SAFETY; LITFSI; COMPOSITE; CARBONATE; LIODFB; DEGRADATION; PERFORMANCE;
D O I
10.3390/polym13050707
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Lithium-ion batteries with conventional LiPF6 carbonate electrolytes are prone to failure at high temperature. In this work, the thermal stability of a dual-salt electrolyte of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium difluoro(oxalato)borate (LiODFB) in carbonate solvents was analyzed by accelerated rate calorimetry (ARC) and differential scanning calorimetry (DSC). LiTFSI-LiODFB dual-salt carbonate electrolyte decomposed when the temperature exceeded 138.5 degrees C in the DSC test and decomposed at 271.0 degrees C in the ARC test. The former is the onset decomposition temperature of the solvents in the electrolyte, and the latter is the LiTFSI-LiODFB dual salts. Flynn-Wall-Ozawa, Starink, and autocatalytic models were applied to determine pyrolysis kinetic parameters. The average apparent activation energy of the dual-salt electrolyte was 53.25 kJ/mol. According to the various model fitting, the thermal decomposition process of the dual-salt electrolyte followed the autocatalytic model. The results showed that the LiTFSI-LiODFB dual-salt electrolyte is significantly better than the LiPF6 electrolyte in terms of thermal stability.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [1] Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato) borate dual-salt electrolytes
    Xiang, Hongfa
    Shi, Pengcheng
    Bhattacharya, Priyanka
    Chen, Xilin
    Mei, Donghai
    Bowden, Mark E.
    Zheng, Jianming
    Zhang, Ji-Guang
    Xu, Wu
    JOURNAL OF POWER SOURCES, 2016, 318 : 170 - 177
  • [2] Lithium difluoro(oxalato)borate as salt for lithium-ion batteries
    Chen, Zonghai
    Liu, J.
    Amine, K.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (03) : A45 - A47
  • [3] Lithium Bis(Trifluoromethanesulfonyl)Imide (LiTFSI): A Prominent Lithium Salt in Lithium-Ion Battery Electrolytes - Fundamentals, Progress, and Future Perspectives
    Li, Zhen
    Wang, Li
    Huang, Xiaodong
    He, Xiangming
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (48)
  • [4] Blends of lithium bis(oxalato)borate and lithium tetrafluoroborate: Useful substitutes for lithium difluoro(oxalato)borate in electrolytes for lithium metal based secondary batteries?
    Schedlbauer, T.
    Rodehorst, U. C.
    Schreiner, C.
    Gores, H. J.
    Winter, M.
    ELECTROCHIMICA ACTA, 2013, 107 : 26 - 32
  • [5] Lithium difluoro(oxalato)borate as a functional additive for lithium-ion batteries
    Liu, Jun
    Chen, Zonghai
    Busking, Sara
    Amine, K.
    ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (03) : 475 - 479
  • [6] Lithium difluoro(oxalato)borate as a functional additive for lithium-ion batteries
    Chemical Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, United States
    Electrochem. Commun., 2007, 3 (475-479):
  • [7] Comparative study of lithium bis(oxalato) borate and lithium bis(fluorosulfonyl) imide on lithium manganese oxide spinel lithium-ion batteries
    Wang, Renheng
    Li, Xinhai
    Wang, Zhixing
    Guo, Huajun
    Su, Mingru
    Hou, Tao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 624 : 74 - 84
  • [8] Lithium Bis(fluorosulfony)imide-Lithium Hexafluorophosphate Binary-Salt Electrolytes for Lithium-Ion Batteries: Aluminum Corrosion Behaviors and Electrochemical Properties
    Xia, Lan
    Jiang, Yabei
    Pan, Yueyang
    Li, Shiqi
    Wang, Jason
    He, Yiting
    Xia, Yonggao
    Liu, Zhaoping
    Chen, George Z.
    CHEMISTRYSELECT, 2018, 3 (07): : 1954 - 1960
  • [9] Electrochemical characterizaiton of electrolytes for lithium-ion batteries based on lithium difluoromono(oxalato)borate
    Zugmann, Sandra
    Moosbauer, Dominik
    Amereller, Marius
    Schreiner, Christian
    Wudy, Franz
    Schmitz, Rene
    Schmitz, Raphael
    Isken, Philipp
    Dippel, Christian
    Mueller, Romek
    Kunze, Miriam
    Lex-Balducci, Alexandra
    Winter, Martin
    Gores, Heiner Jakob
    JOURNAL OF POWER SOURCES, 2011, 196 (03) : 1417 - 1424
  • [10] Thermal stability of lithium-ion battery electrolytes
    Ravdel, B
    Abraham, KM
    Gitzendanner, R
    DiCarlo, J
    Lucht, B
    Campion, C
    JOURNAL OF POWER SOURCES, 2003, 119 : 805 - 810