Graph attention temporal convolutional network for traffic speed forecasting on road networks

被引:49
|
作者
Zhang, Ke [1 ]
He, Fang [2 ,3 ]
Zhang, Zhengchao [1 ]
Lin, Xi [1 ,3 ]
Li, Meng [1 ,3 ]
机构
[1] Tsinghua Univ, Dept Civil Engn, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Ind Engn, Beijing, Peoples R China
[3] Tsinghua Univ, Tsinghua Daimler Joint Res Ctr Sustainable Transp, Beijing 100084, Peoples R China
关键词
Traffic prediction; deep learning; graph attention network; temporal convolutional network; NEURAL-NETWORK; PREDICTION; MODEL;
D O I
10.1080/21680566.2020.1822765
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Traffic speed forecasting plays an increasingly essential role in successful intelligent transportation systems. However, this still remains a challenging task when the accuracy requirement is demanding. To improve the prediction accuracy and achieve a timely performance, the capture of the intrinsically spatio-temporal dependencies and the creation of a parallel model architecture are required. Accordingly, we propose a novel end-to-end deep learning framework named Graph Attention Temporal Convolutional Network (GATCN). The proposed model employs the graph attention network to mine the complex spatial correlations within the traffic network and temporal convolution operation to capture temporal dependencies. In addition, the multi-head self-attention mechanism is incorporated into the model to extract the spatio-temporal coupling effects. Experiments show that the proposed model consistently outperforms other state-of-the-art baselines for various prediction intervals on two real-world datasets. Moreover, we reveal that the proposed model can effectively distinguish the sophisticated traffic patterns of ramps on expressways by analyzing the graph attention heatmap.
引用
收藏
页码:153 / 171
页数:19
相关论文
共 50 条
  • [1] Short-term traffic speed forecasting based on graph attention temporal convolutional networks
    Guo, Ge
    Yuan, Wei
    NEUROCOMPUTING, 2020, 410 : 387 - 393
  • [2] Forecasting traffic flow with spatial–temporal convolutional graph attention networks
    Xiyue Zhang
    Yong Xu
    Yizhen Shao
    Neural Computing and Applications, 2022, 34 : 15457 - 15479
  • [3] Attention-based dynamic spatial-temporal graph convolutional networks for traffic speed forecasting
    Zhao, Jianli
    Liu, Zhongbo
    Sun, Qiuxia
    Li, Qing
    Jia, Xiuyan
    Zhang, Rumeng
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 204
  • [4] Forecasting traffic flow with spatial-temporal convolutional graph attention networks
    Zhang, Xiyue
    Xu, Yong
    Shao, Yizhen
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (18): : 15457 - 15479
  • [5] A Graph Convolutional Stacked Temporal Attention Neural Network for Traffic Flow Forecasting
    Feng, Yushan
    Han, Fengxia
    Zhao, Shengjie
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [6] Network Traffic Overload Prediction with Temporal Graph Attention Convolutional Networks
    Yu, Qiaohong
    Wang, Huandong
    Li, Tong
    Jin, Depeng
    Wang, Xing
    Zhu, Lin
    Feng, Junlan
    Deng, Chao
    2022 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2022, : 885 - 890
  • [7] Uncertainty-Aware Temporal Graph Convolutional Network for Traffic Speed Forecasting
    Qian, Weizhu
    Nielsen, Thomas Dyhre
    Zhao, Yan
    Larsen, Kim Guldstrand
    Yu, James Jianqiao
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (08) : 8578 - 8590
  • [8] Spatial-Temporal Convolutional Graph Attention Networks for Citywide Traffic Flow Forecasting
    Zhang, Xiyue
    Huang, Chao
    Xu, Yong
    Xia, Lianghao
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 1853 - 1862
  • [9] Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting
    Guo, Shengnan
    Lin, Youfang
    Feng, Ning
    Song, Chao
    Wan, Huaiyu
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 922 - 929
  • [10] A3T-GCN: Attention Temporal Graph Convolutional Network for Traffic Forecasting
    Bai, Jiandong
    Zhu, Jiawei
    Song, Yujiao
    Zhao, Ling
    Hou, Zhixiang
    Du, Ronghua
    Li, Haifeng
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (07)