Vision-Aided Absolute Trajectory Estimation Using an Unsupervised Deep Network with Online Error Correction

被引:0
|
作者
Shamwell, E. Jared [1 ]
Leung, Sarah [1 ]
Nothwang, William D. [2 ]
机构
[1] US Army, Res Lab, GTS Stationed, Adelphi, MD 20783 USA
[2] US Army, Res Lab, Sensors & Electron Devices Directorate, Elect Sense & Control Team, Adelphi, MD 20783 USA
关键词
KALMAN FILTER;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an unsupervised deep neural network approach to the fusion of RGB-D imagery with inertial measurements for absolute trajectory estimation. Our network, dubbed the Visual-Inertial-Odometry Learner (VIOLearner), learns to perform visual-inertial odometry (VIO) without inertial measurement unit (IMU) intrinsic parameters (corresponding to gyroscope and accelerometer bias or white noise) or the extrinsic calibration between an IMU and camera. The network learns to integrate IMU measurements and generate hypothesis trajectories which are then corrected online according to the Jacobians of scaled image projection errors with respect to a spatial grid of pixel coordinates. We evaluate our network against state-of-the-art (SOA) visual-inertial odometry, visual odometry, and visual simultaneous localization and mapping (VSLAM) approaches on the KITTI Odometry dataset [1] and demonstrate competitive odometry performance.
引用
收藏
页码:2524 / 2531
页数:8
相关论文
共 27 条
  • [1] Feature matching error analysis and modeling for consistent estimation in vision-aided navigation
    Yang, Chun
    Vadlamani, Ananth
    Soloviev, Andrey
    Veth, Michael
    Taylor, Clark
    NAVIGATION-JOURNAL OF THE INSTITUTE OF NAVIGATION, 2018, 65 (04): : 609 - 628
  • [2] Computer Vision-Aided 2D Error Assessment and Correction for Helix Bioprinting
    Liu, Changxi
    Liu, Jia
    Yang, Chengliang
    Tang, Yujin
    Lin, Zhengjie
    Li, Long
    Liang, Hai
    Lu, Weijie
    Wang, Liqiang
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2022, 8 (02) : 174 - 186
  • [3] A Practical Vision-Aided Multi-Robot Autonomous Navigation using Convolutional Neural Network
    Rocchi, Alexandre
    Wang, Zike
    Pan, Ya-Jun
    2023 IEEE 6TH INTERNATIONAL CONFERENCE ON INDUSTRIAL CYBER-PHYSICAL SYSTEMS, ICPS, 2023,
  • [4] Computer Vision-Aided Diabetic Retinopathy Detection Using Cloud-Deployed Deep Learning Framework
    Das Adhikari, Nimai Chand
    Seggoju, Pavan Kumar
    Rachakulla, Venkata Rama Srikanth
    Madala, Harika
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 4, INTELLISYS 2023, 2024, 825 : 638 - 654
  • [5] Vision-aided UAV Navigation and Dynamic Obstacle Avoidance using Gradient-based B-spline Trajectory Optimization
    Xu, Zhefan
    Xiu, Yumeng
    Zhan, Xiaoyang
    Chen, Baihan
    Shimada, Kenji
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 1214 - 1220
  • [6] Stereo Vision aided Image Dehazing using Deep Neural Network
    Na, Jeong-Yun
    Yoon, Kuk-Jin
    PROCEEDINGS OF THE 1ST WORKSHOP AND CHALLENGE ON COMPREHENSIVE VIDEO UNDERSTANDING IN THE WILD (COVIEW'18), 2018, : 15 - 19
  • [7] Unsupervised Deep Visual-Inertial Odometry with Online Error Correction for RGB-D Imagery
    Shamwell, E. Jared
    Lindgren, Kyle
    Leung, Sarah
    Nothwang, William D.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (10) : 2478 - 2493
  • [8] BooM-VIO: Bootstrapped Monocular Visual-Inertial Odometry with Absolute Trajectory Estimation through Unsupervised Deep Learning
    Lindgren, Kyle
    Leung, Sarah
    Nothwang, William D.
    Shamwell, E. Jared
    2019 19TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS (ICAR), 2019, : 516 - 522
  • [9] Underwater Inherent Optical Properties Estimation Using a Depth Aided Deep Neural Network
    Yu, Zhibin
    Wang, Yubo
    Zheng, Bing
    Zheng, Haiyong
    Wang, Nan
    Gu, Zhaorui
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2017, 2017
  • [10] Image Data Compression and Noisy Channel Error Correction Using Deep Neural Network
    Watkins, Yijing Z.
    Sayeh, Mohammad R.
    COMPLEX ADAPTIVE SYSTEMS, 2016, 95 : 145 - 152