Spaces of max-min measures on compact Hausdorff spaces

被引:2
|
作者
Brydun, Viktoriya [1 ]
Zarichnyi, Mykhailo [2 ]
机构
[1] Lviv Natl Univ, Dept Mech & Math, Univ Str 1, UA-79000 Lvov, Ukraine
[2] Univ Rzeszow, Fac Math & Nat Sci, 1 Prof St Pigon St, PL-35310 Rzeszow, Poland
关键词
Max-min measure; Max-plus measure; Compact Hausdorff space; Monad;
D O I
10.1016/j.fss.2019.06.012
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The notion of max-min measure is a counterpart of the notion of max-plus measure (Maslov measure or idempotent measure). In this paper we consider the spaces of max-min measures on the compact Hausdorff spaces. It is proved that the obtained functor of max-min measures is isomorphic to the functor of max-plus (idempotent) measures considered by the second-named author. However, it turns out that the monads generated by these functors are not isomorphic. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:138 / 151
页数:14
相关论文
共 50 条
  • [1] Max-min measures on ultrametric spaces
    Cencelj, Matija
    Repovs, Dusan
    Zarichnyi, Michael
    TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (05) : 673 - 681
  • [2] INVARIANT MEASURES IN COMPACT HAUSDORFF SPACES
    ROBERTS, JW
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1975, 24 (07) : 691 - 718
  • [3] On the Hausdorff and packing measures of typical compact metric spaces
    Jurina, S.
    MacGregor, N.
    Mitchell, A.
    Olsen, L.
    Stylianou, A.
    AEQUATIONES MATHEMATICAE, 2018, 92 (04) : 709 - 735
  • [4] On the Hausdorff and packing measures of typical compact metric spaces
    S. Jurina
    N. MacGregor
    A. Mitchell
    L. Olsen
    A. Stylianou
    Aequationes mathematicae, 2018, 92 : 709 - 735
  • [5] Compact Hausdorff Spaces with Relations and Gleason Spaces
    Bezhanishvili, G.
    Gabelaia, D.
    Harding, J.
    Jibladze, M.
    APPLIED CATEGORICAL STRUCTURES, 2019, 27 (06) : 663 - 686
  • [6] Compact Hausdorff Spaces with Relations and Gleason Spaces
    G. Bezhanishvili
    D. Gabelaia
    J. Harding
    M. Jibladze
    Applied Categorical Structures, 2019, 27 : 663 - 686
  • [7] ON THE HYPERSPACE OF MAX-MIN CONVEX COMPACT SETS
    Bazylevych, L. E.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2009, 15 (04): : 322 - 332
  • [8] DECOMPOSITIONS OF COMPACT HAUSDORFF SPACES
    RAKOWSKI, ZM
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1975, 23 (10): : 1089 - 1091
  • [9] ON ULTRACOPRODUCTS OF COMPACT HAUSDORFF SPACES
    GUREVIC, R
    JOURNAL OF SYMBOLIC LOGIC, 1988, 53 (01) : 294 - 300
  • [10] Modal compact Hausdorff spaces
    Bezhanishvili, Guram
    Bezhanishvili, Nick
    Harding, John
    JOURNAL OF LOGIC AND COMPUTATION, 2015, 25 (01) : 1 - 35