Monte Carlo modeling of bulk Gd

被引:0
|
作者
Stanica, N. [1 ]
Chesler, P. [1 ]
Hornoiu, C. [1 ]
Radu, C. [2 ]
Suh, Soong-Hyuck [3 ]
机构
[1] Inst Phys Chem, Coordinat Chem, Splaiul Independentei 202, Bucharest 060021, Romania
[2] Lake Shore Cryotron Inc, Westerville, OH 43082 USA
[3] Keimyung Univ, Dept Chem Engn, Daegu 42601, South Korea
关键词
Hexagonal close-packed structure; Indirect Ruderman-Kittel-Kasuya-Yosida 4f-4f exchange; Ising Hamiltonian; Spin reorientation temperature; Magnetic refrigeration material; Critical exponents; MAGNETIC-BEHAVIOR; SIMULATION; TEMPERATURE; EXPONENTS; 1D; 2D;
D O I
10.1016/j.jpcs.2020.109571
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To understand the interplay between lattice structure and spin degrees of freedom, a bulk-Gd lattice as a hexagonal close-packed structure was generated and populated with paramagnetic Gd3+ ions with random projections (M-S(Gd)(i), i = 1, 245, or 443). Isotropic interactions of every site with their 12 nearest neighbors were taken into account. On the basis of the Monte Carlo Metropolis algorithm, the variation with temperature and magnetic field strength was obtained for the following physical quantities: magnetization M(T,H), the product of the magnetic susceptibility and temperature chi(mol)*T, magnetic specific heat C(T,H), entropy variation Delta S(T,Delta H), and statistics of spin projections M-S(Gd)(i,T). We also show the resulting interatomic exchange J(Gd)(-)(Gd), the reorientation of the spin temperature, the behavior of the Curie temperature versus a magnetic field, and magnetocaloric properties of bulk Gd.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Monte Carlo versus bulk conductivity modeling of RF breakdown of helium
    Thoma, Carsten
    Hughes, Thomas P.
    Bruner, Nichelle L.
    Genoni, Thomas C.
    Welch, Dale R.
    Clark, Robert E.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2006, 34 (03) : 910 - 919
  • [2] Monte Carlo modeling of high field carrier transport in bulk InP
    You, AH
    Ong, DS
    2000 IEEE INTERNATIONAL CONFERENCE ON SEMICONDUCTOR ELECTRONICS, PROCEEDINGS, 2000, : 168 - 172
  • [3] Monte Carlo Modeling of Magnetic Phase Transitions in Amorphous Alloys of the Re–Gd System
    Bondarev A.V.
    Pashueva I.M.
    Ozherelyev V.V.
    Bataronov I.L.
    Bulletin of the Russian Academy of Sciences: Physics, 2019, 83 (07) : 841 - 843
  • [4] Monte Carlo modeling of KAMINI
    Mohapatra, DK
    Sunny, CS
    Mohanakrishnan, P
    Subbaiah, KV
    ANNALS OF NUCLEAR ENERGY, 2004, 31 (18) : 2185 - 2194
  • [5] Reverse Monte Carlo modeling
    McGreevy, RL
    JOURNAL DE PHYSIQUE IV, 2003, 111 : 347 - 371
  • [6] Monte Carlo modeling of hot electron transport in bulk AlAs, AlGaAs and GaAs at room temperature
    Arabshahi, H.
    Khalvati, M. R.
    Rokn-Abadi, M. Rezaee
    MODERN PHYSICS LETTERS B, 2008, 22 (18): : 1777 - 1784
  • [7] Monte Carlo modeling of spin-polarized photoemission from p -doped bulk GaAs
    Chubenko, Oksana
    Karkare, Siddharth
    Dimitrov, Dimitre A.
    Bae, Jai Kwan
    Cultrera, Luca
    Bazarov, Ivan
    Afanasev, Andrei
    Journal of Applied Physics, 2021, 130 (06):
  • [8] Monte Carlo Modeling of Pigmented Lesions
    Gareau, Daniel
    Jacques, Steven
    Krueger, James
    PHOTONIC THERAPEUTICS AND DIAGNOSTICS X, 2014, 8926
  • [9] Monte Carlo modeling for individual monitoring
    Gualdrini, G.
    RADIATION PROTECTION DOSIMETRY, 2007, 125 (1-4) : 139 - 144
  • [10] Monte Carlo soft handoff modeling
    Rodionov, AS
    Cho, H
    EURASIA-ICT 2002: INFORMATION AND COMMUNICATION TECHNOLOGY, PROCEEDINGS, 2002, 2510 : 560 - 568