Sympathoinhibitory function of the α2A-adrenergic receptor subtype

被引:62
|
作者
Makaritsis, KP
Johns, C
Gavras, I
Altman, JD
Handy, DE
Bresnahan, MR
Gavras, H
机构
[1] Boston Univ, Sch Med, Hyperts & Atherosclerosis Sect, Boston, MA 02118 USA
[2] Stanford Univ, Howard Hughes Med Inst, Stanford, CA 94305 USA
关键词
adrenergic receptors; mice; knockout; hypertension; sodium-dependent; hyperadrenergic state;
D O I
10.1161/01.HYP.34.3.403
中图分类号
R6 [外科学];
学科分类号
1002 ; 100210 ;
摘要
Presynaptic alpha(2)-adrenergic receptors (alpha(2)-AR) are distributed throughout the central nervous system and are highly concentrated in the brain stem, where they contribute to neural baroreflex control of blood pressure (BP). To explore the role of the alpha(2A)-AR subtype in this function, we compared BP and plasma norepinephrine and epinephrine levels in genetically engineered mice with deleted alpha(2A)-AR gene to their wild-type controls. At baseline, the alpha(2A)-AR gene knockouts (n=11) versus controls (n=10) had higher systolic BP (123+/-2.5 versus 115+/-2.5 mm Hg, P<0.05), heart rate (730+/-15 versus 600+/-18 b/min, P<0.001), and norepinephrine (1.005+/-0.078 versus 0.587+/-0.095 ng/mL, P<0.01), respectively. When submitted to subtotal nephrectomy and given 1% saline as drinking water, both alpha(2A)-AR gene knockouts (n=14) and controls (n=14) became hypertensive, but the former required 15.6+/-2.5 days versus 29.3+/-1.4 days for the controls (P<0.001). End-point systolic BP was similar for both at 155+/-2.1 versus 152+/-5.2 mm Hg, but norepinephrine and epinephrine levels were twice as high in the knockouts at 1.386+/-0.283 and 0.577+/-0.143 versus 0.712+/-0.110 and 0.255+/-0.032 ng/mL, respectively, P<0.05 for both; We conclude that the alpha(2A)-AR subtype exerts a sympathoinhibitory effect, and its loss leads to a hypertensive, hyperadrenergic state.
引用
收藏
页码:403 / 407
页数:5
相关论文
共 50 条
  • [1] Sympathoinhibitory function of the ∝-2A adrenergic receptor subtype
    Makaritsis, K
    Handy, DE
    Johns, C
    Altman, J
    Bresnahan, K
    Gavras, I
    Gavras, H
    HYPERTENSION, 1999, 34 (02) : 330 - 330
  • [2] Characterization of platelets lacking the alpha 2a-adrenergic receptor subtype
    Loftus, DJ
    Altman, JD
    Kobilka, BK
    Hurle, MA
    Smith, SJ
    CIRCULATION, 1997, 96 (08) : 3061 - 3061
  • [3] Characterization of platelets lacking the alpha 2a-adrenergic receptor subtype.
    Loftus, DJ
    Altman, JD
    Hurle, MA
    Kobilka, BK
    Smith, SJ
    BLOOD, 1997, 90 (10) : 1243 - 1243
  • [4] Role of the ionic lock of the α2A-adrenergic receptor
    Ambrosio, M.
    Lohse, M. J.
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2013, 386 : S4 - S4
  • [5] Inverse agonist activity at the α2A-adrenergic receptor
    Wade, SM
    Lan, KL
    Moore, DJ
    Neubig, RR
    MOLECULAR PHARMACOLOGY, 2001, 59 (03) : 532 - 542
  • [6] α2A-adrenergic receptors mediate sympathoinhibitory responses to atrial natriuretic peptide in the mouse anterior hypothalamic nucleus
    Peng, N
    Chambless, BD
    Oparil, S
    Wyss, JM
    HYPERTENSION, 2003, 41 (03) : 571 - 575
  • [7] Homology modeling and docking studies of the α2A-adrenergic receptor
    Zhao, LF
    Ding, XQ
    Ding, JJ
    Chen, JS
    ACTA PHYSICO-CHIMICA SINICA, 2005, 21 (02) : 151 - 155
  • [8] Transgenic models of α2-adrenergic receptor subtype function
    Hein, L
    REVIEWS OF PHYSIOLOGY BIOCHEMISTRY AND PHARMACOLOGY, 2001, 142 : 161 - 185
  • [9] Structure/function analysis of α2A-adrenergic receptor interaction with G protein-coupled receptor kinase
    Pao, CS
    Benovic, JL
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (12) : 11052 - 11058
  • [10] Variations in the α2A-adrenergic receptor gene and their functional effects
    Kurnik, D
    Muszkat, M
    Li, C
    Sofowora, GG
    Solus, J
    Xie, HG
    Harris, PA
    Jiang, L
    McMunn, C
    Ihrie, P
    Dawson, EP
    Williams, SM
    Wood, AJJ
    Stein, CM
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2006, 79 (03) : 173 - 185