Stable behavior of solution for the reaction-diffusion system of atmospheric nonlinear dynamics and thermodynamics

被引:1
|
作者
Chen Li-Hua [1 ]
Lin Wan-Tao [2 ]
Lin Yi-Hua [2 ]
Mo Jia-Qi [3 ]
机构
[1] Fujian Normal Univ, Fuqing Branch, Dept Math & Comp Sci, Fuqing 350300, Peoples R China
[2] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R China
[3] Anhuii Normal Univ, Dept Math, Wuhu 241003, Peoples R China
基金
中国国家自然科学基金;
关键词
reaction-diffusion; thermodynamics; atmospheric nonlinear system;
D O I
10.7498/aps.61.140202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A class of nonlinear system is studied. Firstly, the reaction-diffusion system with speed, temperature and humidity for a atmospheric nonlinear force dissipative system is discussed using the atmospheric nonlinear theory of thermodynamics and dynamics. Secondly, the small disturbed solution of atmospheric nonlinear reaction-diffusion system in the neighborhood of homogeneous steady state solution is obtained from the Lyapunov stability theory. Finally, from the variations of the control parameters for transgenic processes, the states of ordered-unordered-ordered processes of atmospheric nonlinear reaction-diffusion system are found. Thus the corresponding local atmospheric nonlinear force dissipative system can be predicated and calculated.
引用
收藏
页数:6
相关论文
共 19 条
  • [1] [Anonymous], SCI CHINA G
  • [2] [Anonymous], INTRO ATMOSPHERIC TH
  • [3] Barbu L., 2007, Singularly Perturbed Boundary Value Problems, DOI [10.1007/978-3-7643-8331-2, DOI 10.1007/978-3-7643-8331-2]
  • [4] On the existence of some new positive interior spike solutions to a semilinear Neumann problem
    D'Aprile, Teresa
    Pistoia, Angela
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (03) : 556 - 573
  • [5] De Groot SK, 1962, NONEQUILLBEIUM THERM
  • [6] De Jager E.M., 1996, The Theory of Singular Perturbations
  • [7] SINGULARLY PERTURBED DEGENERATED PARABOLIC EQUATIONS AND APPLICATION TO SEABED MORPHODYNAMICS IN TIDED ENVIRONMENT
    Faye, Ibrahima
    Frenod, Emmanuel
    Seck, Diaraf
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (03) : 1001 - 1030
  • [8] MAHRT L, 1986, J ATMOS SCI, V43, P1036, DOI 10.1175/1520-0469(1986)043<1036:OTSMA>2.0.CO
  • [9] 2
  • [10] Travelling wave solution of disturbed Vakhnenko equation for physical model
    Mo Jia-Qi
    [J]. ACTA PHYSICA SINICA, 2011, 60 (09)