A graph polynomial for independent sets of Fibonacci trees

被引:0
|
作者
Sreeja, K. U. [1 ]
Vinodkumar, P. B. [2 ]
Ramkumar, P. B. [2 ]
机构
[1] Fac KKTM Govt Coll, Dept Math, Pullut, Thrissur, India
[2] Fac Rajagiri Sch Engn & Technol, Dept Math, Kakkanad, India
关键词
Fibonacci tree; Independence polynomial;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the visualized representation of Fibonacci tree and its corresponding independence polynomial. This representation helps us to obtain a recursive formula for independence polynomial and to study some relevant properties of Fibonacci trees.
引用
收藏
页码:1129 / 1133
页数:5
相关论文
共 50 条
  • [1] A Graph Polynomial for Independent Sets of Bipartite Graphs
    Ge, Q.
    Stefankovic, D.
    COMBINATORICS PROBABILITY & COMPUTING, 2012, 21 (05): : 695 - 714
  • [2] A graph polynomial for independent sets of bipartite graphs
    Ge, Qi
    Stefankovic, Daniel
    IARCS ANNUAL CONFERENCE ON FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE (FSTTCS 2010), 2010, 8 : 240 - 250
  • [3] Generalized Fibonacci polynomial of graph
    Wloch, I
    ARS COMBINATORIA, 2003, 68 : 49 - 55
  • [4] ON THE CHARACTERIZATION OF FIBONACCI NUMBERS AS MAXIMAL INDEPENDENT SETS OF VERTICES OF CERTAIN TREES
    ELBASIL, S
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 1988, 61 (02) : 533 - 537
  • [5] Finding independent sets in a graph using continuous multivariable polynomial formulations
    James Abello
    Sergiy Butenko
    Panos M. Pardalos
    Mauricio G.C. Resende
    Journal of Global Optimization, 2001, 21 : 111 - 137
  • [6] Finding independent sets in a graph using continuous multivariable polynomial formulations
    Abello, J
    Butenko, S
    Pardalos, PM
    Resende, MGC
    JOURNAL OF GLOBAL OPTIMIZATION, 2001, 21 (02) : 111 - 137
  • [7] The Fibonacci number of Fibonacci trees and a related family of polynomial recurrence systems
    Wagner, Stephan G.
    FIBONACCI QUARTERLY, 2007, 45 (03): : 247 - 253
  • [8] Independent sets in trees
    Jou, Min-Jen
    ARS COMBINATORIA, 2013, 109 : 383 - 389
  • [9] INDEPENDENT NEIGHBORHOOD POLYNOMIAL OF A GRAPH
    Amiruddin-Rajik, Bayah J.
    Sappayani, Ruhilmina A.
    Artes Jr, Rosalio G.
    Junio, Bhusra I.
    Jiripa, Hashirin H. Moh.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2024, 41 (02): : 149 - 156
  • [10] On the independent domination polynomial of a graph
    Jahari, Somayeh
    Alikhani, Saeid
    DISCRETE APPLIED MATHEMATICS, 2021, 289 : 416 - 426