Semiclassical analysis of edge state energies in the integer quantum Hall effect

被引:9
|
作者
Avishai, Y. [1 ,2 ,3 ,4 ]
Montambaux, G. [5 ]
机构
[1] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel
[2] Ben Gurion Univ Negev, Ilse Katz Ctr Nanotechnol, IL-84105 Beer Sheva, Israel
[3] RTRA Triangle Phys, F-91190 Les Algorithmes, Saint Aubin, France
[4] CEA Saclay, CNRS URA 2306, Inst Phys Theor, F-91191 Gif Sur Yvette, France
[5] Ctr Univ Paris Sud, CNRS UMR 8502, Phys Solides Lab, F-91405 Orsay, France
来源
EUROPEAN PHYSICAL JOURNAL B | 2008年 / 66卷 / 01期
关键词
D O I
10.1140/epjb/e2008-00404-6
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Analysis of edge-state energies in the integer quantum Hall effect is carried out within the semiclassical approximation. When the system is wide so that each edge can be considered separately, this problem is equivalent to that of a one dimensional harmonic oscillator centered at x = x(c) and an infinite wall at x = 0, and appears in numerous physical contexts. The eigenvalues E-n(x(c)) for a given quantum number n are solutions of the equation S( E, x(c)) = pi[n + gamma(E, x(c))] where S is the WKB action and 0 < gamma < 1 encodes all the information on the connection procedure at the turning points. A careful implication of the WKB connection formulae results in an excellent approximation to the exact energy eigenvalues. The dependence of gamma[En(x(c)), x(c)] equivalent to gamma(n)(x(c)) on x(c) is analyzed between its two extreme values 1/2 as x(c) -> -infinity far inside the sample and 3/4 as x(c) -> infinity far outside the sample. The edge-state energies E-n(x(c)) obey an almost exact scaling law of the form E-n(x(c)) = 4[n + gamma(n)(x(c))]f (x(c)/root 4n+3) and the scaling function f(y) is explicitly elucidated.
引用
收藏
页码:41 / 49
页数:9
相关论文
共 50 条
  • [1] Semiclassical analysis of edge state energies in the integer quantum Hall effect
    Y. Avishai
    G. Montambaux
    The European Physical Journal B, 2008, 66 : 41 - 49
  • [2] A semiclassical approach to the integer quantum Hall problem
    Hidalgo, MA
    MICROELECTRONIC ENGINEERING, 1998, 43-4 : 453 - 458
  • [3] Optimization of edge state velocity in the integer quantum Hall regime
    Sahasrabudhe, H.
    Novakovic, B.
    Nakamura, J.
    Fallahi, S.
    Povolotskyi, M.
    Klimeck, G.
    Rahman, R.
    Manfra, M. J.
    PHYSICAL REVIEW B, 2018, 97 (08)
  • [4] Revision of the edge channel picture for the integer quantum Hall effect
    Oswald, Josef
    RESULTS IN PHYSICS, 2023, 47
  • [5] Tunable dispersion of the edge states in the integer quantum Hall effect
    Malki, Maik
    Uhrig, Goetz S.
    SCIPOST PHYSICS, 2017, 3 (04):
  • [6] Edge-state critical behavior of the integer quantum Hall transition
    Puschmann, Martin
    Cain, Philipp
    Schreiber, Michael
    Vojta, Thomas
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (04): : 1003 - 1007
  • [7] Edge-state critical behavior of the integer quantum Hall transition
    Martin Puschmann
    Philipp Cain
    Michael Schreiber
    Thomas Vojta
    The European Physical Journal Special Topics, 2021, 230 : 1003 - 1007
  • [8] Equilibration of integer quantum Hall edge states
    Kovrizhin, D. L.
    Chalker, J. T.
    PHYSICAL REVIEW B, 2011, 84 (08)
  • [9] Edge current channels and Chern numbers in the integer quantum Hall effect
    Kellendonk, J
    Richter, T
    Schulz-Baldes, H
    REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (01) : 87 - 119
  • [10] On the Landauer formula and the edge channel picture of the integer quantum Hall effect
    Oswald, J
    PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON THE PHYSICS OF SEMICONDUCTORS, PTS I AND II, 2001, 87 : 977 - 978