Glaucoma Diagnostic Accuracy of Machine Learning Classifiers Using Retinal Nerve Fiber Layer and Optic Nerve Data from SD-OCT

被引:45
作者
Barella, Kleyton Arlindo [1 ]
Costa, Vital Paulino [1 ]
Vidotti, Vanessa Goncalves [1 ]
Silva, Fabricio Reis [1 ]
Dias, Marcelo [2 ]
Gomi, Edson Satoshi [2 ]
机构
[1] Univ Estadual Campinas UNICAMP, Fac Med Sci, Campinas, SP, Brazil
[2] Univ Sao Paulo, Dept Engn, Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
COHERENCE TOMOGRAPHY; PARAMETERS; CLASSIFICATION; PERIMETRY; NETWORK;
D O I
10.1155/2013/789129
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose. To investigate the diagnostic accuracy of machine learning classifiers (MLCs) using retinal nerve fiber layer (RNFL) and optic nerve (ON) parameters obtained with spectral domain optical coherence tomography (SD-OCT). Methods. Fifty-seven patients with early to moderate primary open angle glaucoma and 46 healthy patients were recruited. All 103 patients underwent a complete ophthalmological examination, achromatic standard automated perimetry, and imaging with SD-OCT. Receiver operating characteristic (ROC) curves were built for RNFL and ON parameters. Ten MLCs were tested. Areas under ROC curves (aROCs) obtained for each SD-OCT parameter and MLC were compared. Results. The mean age was 56.5 +/- 8.9 years for healthy individuals and 59.9 +/- 9.0 years for glaucoma patients (P = 0.054). Mean deviation values were -1.4 dB for healthy individuals and -4.0 dB for glaucoma patients (P < 0.001). SD-OCT parameters with the greatest aROCs were cup/disc area ratio (0.846) and average cup/disc (0.843). aROCs obtained with classifiers varied from 0.687 (CTREE) to 0.877 (RAN). The aROC obtained with RAN (0.877) was not significantly different from the aROC obtained with the best single SD-OCT parameter (0.846) (P = 0.542). Conclusion. MLCs showed good accuracy but did not improve the sensitivity and specificity of SD-OCT for the diagnosis of glaucoma.
引用
收藏
页数:7
相关论文
共 24 条
[1]   Trained artificial neural network for glaucoma diagnosis using visual field data - A comparison with conventional algorithms [J].
Bizios, Dimitrios ;
Heijl, Anders ;
Bengtsson, Boel .
JOURNAL OF GLAUCOMA, 2007, 16 (01) :20-28
[2]   Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT [J].
Bizios, Dimitrios ;
Heijl, Anders ;
Hougaard, Jesper Leth ;
Bengtsson, Boel .
ACTA OPHTHALMOLOGICA, 2010, 88 (01) :44-52
[3]   Assessing visual field clustering schemes using machine learning classifiers in standard perimetry [J].
Boden, Catherine ;
Chan, Kwokleung ;
Sample, Pamela A. ;
Hao, Jiucang ;
Lee, Te-Wan ;
Zangwill, Linda M. ;
Weinreb, Robert N. ;
Goldbaum, Michael H. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2007, 48 (12) :5582-5590
[4]   Relevance vector machine and support vector machine classifier analysis of scanning laser polarimetry retinal nerve fiber layer measurements [J].
Bowd, C ;
Medeiros, FA ;
Zhang, ZH ;
Zangwill, LM ;
Hao, JC ;
Lee, TW ;
Sejnowski, TJ ;
Weinreb, RN ;
Goldbaum, MH .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2005, 46 (04) :1322-1329
[5]   Bayesian machine learning classifiers for combining structural and functional measurements to classify healthy and glaucomatous eyes [J].
Bowd, Christopher ;
Hao, Jiucang ;
Tavares, Ivan M. ;
Medeiros, Felipe A. ;
Zangwill, Linda M. ;
Lee, Te-Won ;
Sample, Pamela A. ;
Weinreb, Robert N. ;
Goldbaum, Michael H. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2008, 49 (03) :945-953
[6]   Optical coherence tomography machine learning classifiers for glaucoma detection: A preliminary study [J].
Burgansky-Eliash, Z ;
Wollstein, G ;
Chu, TJ ;
Ramsey, JD ;
Glymour, C ;
Noecker, RJ ;
Ishikawa, H ;
Schuman, JS .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2005, 46 (11) :4147-4152
[7]  
Carl Zeiss Meditec, 1595, DET DEF YOUR DEC
[8]   THE LENS OPACITIES CLASSIFICATION SYSTEM-III [J].
CHYLACK, LT ;
WOLFE, JK ;
SINGER, DM ;
LESKE, MC ;
BULLIMORE, MA ;
BAILEY, IL ;
FRIEND, J ;
MCCARTHY, D ;
WU, SY .
ARCHIVES OF OPHTHALMOLOGY, 1993, 111 (06) :831-836
[9]  
GOLDBAUM MH, 1990, INVEST OPHTH VIS SCI, V31, P617
[10]   Combined Evaluation of Frequency Doubling Technology Perimetry and Scanning Laser Ophthalmoscopy for Glaucoma Detection Using Automated Classification [J].
Horn, Folkert K. ;
Laemmer, Robert ;
Mardin, Christian Y. ;
Juenemann, Anselm G. ;
Michelson, Georg ;
Lausen, Berthold ;
Adler, Werner .
JOURNAL OF GLAUCOMA, 2012, 21 (01) :27-34