Thermodynamic and thermoeconomic performance analyses and optimization of a novel power and cooling cogeneration system fueled by low-grade waste heat

被引:30
|
作者
Yu, Wei [1 ]
Xu, Yu [1 ]
Wang, Huitao [1 ]
Ge, Zhong [2 ]
Wang, Jianjun [1 ]
Zhu, Daofei [1 ]
Xia, Yuchen [1 ]
机构
[1] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Kunming 650093, Yunnan, Peoples R China
[2] Yunnan Univ, Sch Architecture & Planning, Kunming 650091, Yunnan, Peoples R China
基金
美国国家科学基金会;
关键词
Dual-pressure evaporation ORC; Ejector refrigeration cycle; Power and cooling cogeneration system; Thermodynamic performance analyses; Optimization; Low-grade heat utilization; ORGANIC RANKINE-CYCLE; REFRIGERATION CYCLE; DUAL-PRESSURE; SINGLE-PRESSURE; DRIVEN; ENERGY; RECOVERY; WATER; PARAMETERS; LAYOUTS;
D O I
10.1016/j.applthermaleng.2020.115667
中图分类号
O414.1 [热力学];
学科分类号
摘要
The ejector refrigeration cycle (ERC) is often used as the sub-cycle of power and cooling cogeneration systems due to its advantages of simple structure design, few moving parts, less system investment, good stability and reliable operation. Considering the potential of organic Rankine cycle (ORC) in the utilization of low-grade heat, and the advantages of simple structure and many choices for working fluid, a novel power and cooling cogeneration system was designed, based on dual-pressure evaporation ORC (DORC) and ERC. In this system, a common condenser was used by DORC and ERC, and a part of working fluid separated from low-pressure steam generator outlet in DORC was used as the primary flow of ejector to drive ERC. A mathematical model for calculating the thermodynamic and thermoeconomic performances of the system was established. Sensitivity analysis was performed to determine the key parameters of the system, the results showed that the low-pressure evaporation temperature (T-LPSG,(out)), high-pressure evaporation temperature (T-HP,T-E), vapor fraction of the low-pressure steam generator outlet (x(LPSG,)(out)) and working fluid mass flow ratio of high-pressure stage to low-pressure stage (k) were the four key parameters of the system. Parametric analysis showed that higher T-LPSG,(out), Out and lower x(LPSG,)(out) were beneficial to increase the cooling output and thermal efficiency, while higher T-HP,T-E and larger k were helpful to increase the net power output and exergy efficiency. The net power output and exergy efficiency can be optimized by T-LPSG,(out) and x(LPSG,) (out). Using genetic algorithm (GA), multi-objective function optimization was carried out with T-HP,T-E, T-LPSG,T-out, x(LPSG, out) and k as the decision variables. Moreover, the system's adaptability for working fluids R245fa, R236ea, R600, R600a, R601 and R601a was investigated. According to the optimization results, R236ea was the most suitable working fluid. When T-HP,T-E was 402.43 K, T-LPSG,(out) was 392.42 K, x(LPSG,)(out) was 0.357 and k was 0.321, the calculated net power output, cooling output, thermal efficiency, exergy efficiency and total cost of unit exergy product (SUCP) were 273.00 kW, 121.80 kW, 14.52%, 44.03% and 42.62$/MWh, respectively. Exergy analysis was conducted using R236ea as working fluid. The results showed that the two steam generators and condenser were the main components responsible for most of the exergy destruction of the system in both basic case and optimized case. Compared to the basic case, the exergy destruction of the steam generators decreased by about 32.3%, and the total exergy destruction of the system decreased by about 5.0% in optimized case.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Thermodynamic analysis and multi-objective optimization of a novel power/cooling cogeneration system for low-grade heat sources
    Yin, Jiqiang
    Yu, Zeting
    Zhang, Chenghui
    Tian, Minli
    Han, Jitian
    ENERGY CONVERSION AND MANAGEMENT, 2018, 166 : 64 - 73
  • [2] Thermodynamic analyses on hybrid sorption cycles for low-grade heat storage and cogeneration of power and refrigeration
    Godefroy, Alexis
    Perier-Muzet, Maxime
    Mazet, Nathalie
    APPLIED ENERGY, 2019, 255
  • [3] Thermodynamic analysis of a novel combined cooling and power system driven by low-grade heat sources
    Yin, Jiqiang
    Yu, Zeting
    Zhang, Chenghui
    Tian, Minli
    Han, Jitian
    ENERGY, 2018, 156 : 319 - 327
  • [4] Thermodynamic and exergoeconomic analysis of a combined cooling, desalination and power system for low-grade waste heat utilization
    Zhou, Shihe
    Zhang, Kechong
    Li, Min
    Yang, Wenkuan
    Shen, Shengqiang
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2023, 45
  • [5] Thermodynamic analysis of ammonia-water power/chilling cogeneration cycle with low-grade waste heat
    Hua, Junye
    Chen, Yaping
    Wang, Yaodong
    Roskilly, A. P.
    APPLIED THERMAL ENGINEERING, 2014, 64 (1-2) : 483 - 490
  • [6] Thermodynamic and thermoeconomic analyses of a new dual-loop organic Rankine - Generator absorber heat exchanger power and cooling cogeneration system
    Pourpasha, Hadi
    Mohammadfam, Yaghoub
    Khani, Leyla
    Mohammadpourfard, Mousa
    Heris, Saeed Zeinali
    ENERGY CONVERSION AND MANAGEMENT, 2020, 224
  • [7] Chemisorption cooling and electric power cogeneration system driven by low grade heat
    Bao, Huashan
    Wang, Yaodong
    Charalambous, Constantinos
    Lu, Zisheng
    Wang, Liwei
    Wang, Ruzhu
    Roskilly, Anthony Paul
    ENERGY, 2014, 72 : 590 - 598
  • [8] Recovery of Low-Grade Heat (Heat Waste) from a Cogeneration Unit for Woodchips Drying: Energy and Economic Analyses
    Dahou, Tilia
    Dutournie, Patrick
    Limousy, Lionel
    Bennici, Simona
    Perea, Nicolas
    ENERGIES, 2019, 12 (03):
  • [9] On the thermodynamic analysis of a novel low-grade heat driven desalination system
    Chen, Q.
    Li, Y.
    Chua, K. J.
    ENERGY CONVERSION AND MANAGEMENT, 2016, 128 : 145 - 159
  • [10] Thermodynamic Analysis and Optimization of a Novel Power-Water Cogeneration System for Waste Heat Recovery of Gas Turbine
    Wang, Shunsen
    Li, Bo
    ENTROPY, 2021, 23 (12)