Normalized maximum likelihood models for genomics

被引:0
|
作者
Tabus, Ioan [1 ]
Rissanen, Jorma [1 ]
Astola, Jaakko [1 ]
机构
[1] Tampere Univ Technol, Inst Signal Proc, FIN-33101 Tampere, Finland
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present NML models for discrete models and show how to apply the Minimum Description Principle to them to obtain structure information. Then we summarize methods derived in our previous works, and we treat in a unified manner all the usual discrete models. In the last part we describe important applications of the proposed models to disease classification.
引用
收藏
页码:1433 / 1438
页数:6
相关论文
共 50 条
  • [1] Selecting amongst multinomial models: An apologia for normalized maximum likelihood
    Kellen, David
    Klauer, Karl Christoph
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2020, 97
  • [2] Selecting food web models using normalized maximum likelihood
    Staniczenko, Phillip P. A.
    Smith, Matthew J.
    Allesina, Stefano
    METHODS IN ECOLOGY AND EVOLUTION, 2014, 5 (06): : 551 - 562
  • [3] Model selection by normalized maximum likelihood
    Myung, JI
    Navarro, DJ
    Pitt, MA
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2006, 50 (02) : 167 - 179
  • [4] Genome compression using normalized maximum likelihood models for constrained Markov sources
    Tabus, Loan
    Korodi, Gergely
    2008 IEEE INFORMATION THEORY WORKSHOP, 2008, : 261 - 265
  • [5] On the normalized maximum likelihood and Bayesian decision theory
    Karabatsos, George
    Walker, Stephen G.
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2006, 50 (06) : 517 - 520
  • [6] Decomposed Normalized Maximum Likelihood Codelength Criterion for Selecting Hierarchical Latent Variable Models
    Wu, Tianyi
    Sugawara, Shinya
    Yamanishi, Kenji
    KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2017, : 1165 - 1174
  • [7] A Fast Normalized Maximum Likelihood Algorithm for Multinomial Data
    Kontkanen, Petri
    Myllymaki, Petri
    19TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-05), 2005, : 1613 - 1615
  • [8] Efficient Computation of Normalized Maximum Likelihood Codes for Gaussian Mixture Models With Its Applications to Clustering
    Hirai, So
    Yamanishi, Kenji
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (11) : 7718 - 7727
  • [9] The decomposed normalized maximum likelihood code-length criterion for selecting hierarchical latent variable models
    Kenji Yamanishi
    Tianyi Wu
    Shinya Sugawara
    Makoto Okada
    Data Mining and Knowledge Discovery, 2019, 33 : 1017 - 1058
  • [10] The decomposed normalized maximum likelihood code-length criterion for selecting hierarchical latent variable models
    Yamanishi, Kenji
    Wu, Tianyi
    Sugawara, Shinya
    Okada, Makoto
    DATA MINING AND KNOWLEDGE DISCOVERY, 2019, 33 (04) : 1017 - 1058