Hopf bifurcation for maps: A frequency-domain approach

被引:23
|
作者
D'Amico, MB [1 ]
Moiola, JL
Paolini, EE
机构
[1] Univ Nacl Sur, Dept Ingn Elect, RA-8000 Bahia Blanca, Buenos Aires, Argentina
[2] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
关键词
bifurcation; discrete-time systems; frequency domain; harmonic analysis;
D O I
10.1109/81.989161
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The application of the graphical Hopf theorem (GHT) as a tool for detecting invariant cycles in maps is presented. The invariant cycle emerging from the bifurcation is approximated using an analogous version of the GHT for continuous-time systems. This technique is formulated in the so-called frequency domain and it involves the use of the Nyquist stability criterion and the harmonic balance method. Some examples are included for illustration.
引用
收藏
页码:281 / 288
页数:8
相关论文
共 50 条
  • [1] Controlling bifurcations in maps via a frequency-domain approach
    D'Amico, MB
    Moiola, JL
    Paolini, EE
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2003, 10 (06): : 781 - 798
  • [2] Hopf bifurcation in a single inertial neuron model: A frequency domain approach
    Li, SR
    Li, SW
    Sun, XP
    Li, J
    ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 1, PROCEEDINGS, 2005, 3496 : 320 - 326
  • [3] GENERALIZED HOPF BIFURCATION IN A FREQUENCY DOMAIN FORMULATION
    Torresi, A. M.
    Calandrini, G. L.
    Bonfili, P. A.
    Moiola, J. L.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (08):
  • [4] Hopf bifurcation in discrete-time systems via a frequency domain approach
    D'Amico, MB
    Moiola, JL
    Paolini, EE
    CONTROL OF OSCILLATIONS AND CHAOS, VOLS 1-3, PROCEEDINGS, 2000, : 290 - 293
  • [5] HOPF BIFURCATION IN A CALCIUM OSCILLATION MODEL AND ITS CONTROL: FREQUENCY DOMAIN APPROACH
    Chang, Yu
    Zhou, Lili
    Wang, Jinliang
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (01):
  • [6] Hopf Bifurcation on a Two-Neuron System with Distributed Delays: A Frequency Domain Approach
    Xiaofeng Liao
    Shaowen Li
    Kwok-wo Wong
    Nonlinear Dynamics, 2003, 31 : 299 - 326
  • [7] Frequency domain approach to Hopf bifurcation for van der Pol equation with distributed delay
    Li, SW
    Liao, XF
    Li, SR
    LATIN AMERICAN APPLIED RESEARCH, 2004, 34 (04) : 267 - 274
  • [8] Hopf bifurcation on a two-neuron system with distributed delays: A frequency domain approach
    Liao, XF
    Li, SW
    Wong, KW
    NONLINEAR DYNAMICS, 2003, 31 (03) : 299 - 326
  • [9] Double Hopf Bifurcation Analysis Using Frequency Domain Methods
    Griselda R. Itovich
    Jorge L. Moiola
    Nonlinear Dynamics, 2005, 39 : 235 - 258
  • [10] Double Hopf bifurcation analysis using frequency domain methods
    Itovich, GR
    Moiola, JL
    NONLINEAR DYNAMICS, 2005, 39 (03) : 235 - 258