Characteristics of ash and slag from four biomass-fired power plants: Ash/slag ratio, unburned carbon, leaching of major and trace elements

被引:45
|
作者
Wang, Xuebin [1 ]
Zhu, Yiming [1 ,2 ]
Hu, Zhongfa [1 ]
Zhang, Lan [3 ]
Yang, Shunzhi [4 ]
Ruan, Renhui [1 ]
Bai, Shengjie [1 ]
Tan, Houzhang [1 ]
机构
[1] Xi An Jiao Tong Univ, MOE Key Lab Thermofluid Sci & Engn, Xian 710049, Shaanxi, Peoples R China
[2] Shenyang Aerosp Univ, Coll Energy & Environm, Liaoning Prov Key Lab Clean Energy, Shenyang 110136, Liaoning, Peoples R China
[3] Henan Prov Boiler Pressure Vessel Safety Inspect, Zhengzhou 450016, Peoples R China
[4] Guoneng Xunxian Biopower Generat Co Ltd, Hebi 456250, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Biomass-fired grate boiler; Ash/slag ratio; Leaching; Trace element; Unburned carbon; PARTICULATE MATTER; PRETREATMENT; COMBUSTION; PYROLYSIS; BEHAVIOR; SOIL;
D O I
10.1016/j.enconman.2020.112897
中图分类号
O414.1 [热力学];
学科分类号
摘要
The utilization of biomass energy is attracting worldwide attention due to the worsening energy crisis and the concerns on carbon dioxide emission. However, the rapidly development of biomass-fired power plants generate enormous amount of slag and ash. At present, the main treatment method of biomass slag and ash is landfill, which not only requires high cost, but also causes a series of environmental issues. Aiming at this problem, the slag and fly ash from four biomass power plants were sampled and characterized. The major/trace element composition and leaching characteristics of slag and fly ash are analyzed, and the effect of volatile mineral in these solid residues on furnace efficiency is also evaluated. The results indicate that for biomass- fired grate furnaces, in the generated solid residues, the slag accounts 60 similar to 70% while the fly ash accounts for 30 similar to 40%. The volatile elements in slag are much lower than those in fly ash, and the unburned carbon content of fly ash is generally lower than that of slag. Due to the enrichment of volatile minerals in fly ash, instead of 815 degrees C, 550 degrees C is suggested to measure the unburned carbon content in fly ash. When the measuring temperature of unburned carbon decreases from 815 degrees C to 550 degrees C, the measured energy loss from the incomplete combustion of solid fuels decreases by one third, which affords a more reasonable evaluation on combustion efficiency. The contents of cadmium and lead in certain fly ash samples exceed the standard, however, all fly ash samples have a high leaching rate of potassium but low leaching rates of copper, zinc, cadmium, lead, chromium and arsenic. It indicates that the fly ash from biomass-fired grate furnace is suitable for producing potassium fertilizer by leaching instead of direct soil fertilization or landfill. The leaching rate of most minerals in slag is much lower than that in fly ash and the contents of heavy metals are far below the prescribed upper limit in standard, which indicates that the slag from biomass-fired grate boiler is more suitable for direct use in soil improvement due to the low contents of hazardous elements.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Properties of slag and ash from the incinerator in biomass power plants
    Li, Qun
    Zhang, Zhixuan
    Liu, Siming
    Su, Jixin
    RENEWABLE AND SUSTAINABLE ENERGY II, PTS 1-4, 2012, 512-515 : 579 - +
  • [2] The Leaching Characteristics of Trace Elements in Coal Fly Ash and an Ash Disposal System of Thermal Power Plants
    Singh, R. K.
    Gupta, N. C.
    Guha, B. K.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2012, 34 (5-8) : 602 - 608
  • [3] Chemical speciation and leaching characteristics of hazardous trace elements in coal and fly ash from coal-fired power plants
    Zhao, Shilin
    Duan, Yufeng
    Lu, Jincheng
    Gupta, Rajender
    Pudasainee, Deepak
    Liu, Shuai
    Liu, Meng
    Lu, Jianhong
    FUEL, 2018, 232 : 463 - 469
  • [4] Sulfate Resistance in Cements Bearing Bottom Ash from Biomass-Fired Electric Power Plants
    Medina, Jose M.
    de Rojas, Maria Isabel Sanchez
    del Bosque, Isabel F. Saez
    Frias, Moises
    Medina, Cesar
    APPLIED SCIENCES-BASEL, 2020, 10 (24): : 1 - 11
  • [5] Properties of fly ash and slag from the power plants
    Seslija, Milos
    Rosic, Aleksandra
    Radovic, Nebojsa
    Vasic, Milinko
    Dogo, Mitar
    Jotic, Milovan
    GEOLOGIA CROATICA, 2016, 69 (03) : 317 - 324
  • [6] Leaching of elements from bottom ash, economizer fly ash, and fly ash from two coal-fired power plants
    Jones, Kevin B.
    Ruppert, Leslie F.
    Swanson, Sharon M.
    INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2012, 94 : 337 - 348
  • [7] PAHs and potentially toxic elements in the fly ash and bed ash of biomass fired power plants
    Masto, Reginald E.
    Sarkar, Elina
    George, Joshy
    Jyoti, Kumari
    Dutta, Pashupati
    Ram, Lal C.
    FUEL PROCESSING TECHNOLOGY, 2015, 132 : 139 - 152
  • [8] Effect of cement incorporation on the leaching characteristics of elements from fly ash and slag treated soils
    Mahedi, Masrur
    Cetin, Bora
    Dayioglu, Asli Y.
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2020, 253
  • [9] Using of Ash and Slag from Power Plants for Embankments Construction
    Marjanovic, Milos
    Pujevic, Veljko
    Jockovic, Sanja
    INTERNATIONAL SCIENTIFIC CONFERENCE ENERGY MANAGEMENT OF MUNICIPAL FACILITIES AND SUSTAINABLE ENERGY TECHNOLOGIES, EMMFT 2018, VOL 1, 2020, 982 : 864 - 871
  • [10] Unburnt carbon and iron content in the ash and slag thermal power plants
    Temnikova, Elena Yu.
    Bogomolov, Alexander R.
    Lapin, Alexey A.
    XXXIII SIBERIAN THERMOPHYSICAL SEMINAR (STS-33), 2017, 115