Al doped MoS2 for adsorption-based water collection

被引:19
|
作者
Szary, Maciej J. [1 ]
机构
[1] Poznan Univ Tech, Inst Phys, Ul Piotrowo 3, PL-61138 Poznan, Poland
关键词
MoS2; Al; H2O; Doping; Adsorption; Density functional theory; ENERGY-CONSUMPTION; MONOLAYER MOS2; FORMALDEHYDE; EQUILIBRIUM; MOLECULES; MECHANISM; DYNAMICS; METHANOL; SORPTION; CARBON;
D O I
10.1016/j.apsusc.2020.147083
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Density functional theory calculations have been performed to investigate Al doping of MoS2 (Al-MoS2), and the adsorption of water molecules on the pristine and doped monolayers. The results show that, H2O@Al-MoS2 has a high degree of dynamical stability allowing for water adsorption even under high-temperature conditions of up to 600 K. This is facilitated by a strong bonding of the dopant with the neighboring Mo, which causes a large charge transfer off the Al atom. Subsequently, Al becomes more electropositive, which gives rise to a bonding interaction with more electronegative oxygen in H2O. The interaction is strong, having the adsorption energy of 1.71 eV. It has an ionic character with the charge transfer between O and Al of 0.16 e(-). This makes the electronic band gap of the system adsorption-sensitive changing its size from 0.33 to 1.08 eV for Al-MoS2 and H2O@Al-MoS2, respectively, which could be utilized in a molecular detector. The described effects are exclusive to the doped system. Adsorption energy of H2O at MoS2 is only 0.07 eV, and the molecule has no impact on the electronics of MoS2 .
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Hydrogen adsorption on doped MoS2 nanostructures
    Mikko Hakala
    Rasmus Kronberg
    Kari Laasonen
    Scientific Reports, 7
  • [2] Hydrogen adsorption on doped MoS2 nanostructures
    Hakala, Mikko
    Kronberg, Rasmus
    Laasonen, Kari
    SCIENTIFIC REPORTS, 2017, 7
  • [3] MoS2 and MoS2 Nanocomposites for Adsorption and Photodegradation of Water Pollutants: A Review
    Amaral, Leonardo O.
    Daniel-da-Silva, Ana L.
    MOLECULES, 2022, 27 (20):
  • [4] Adsorption-based atmospheric water harvesting
    Ejeian, M.
    Wang, R. Z.
    JOULE, 2021, 5 (07) : 1678 - 1703
  • [5] Molecular investigation of water adsorption on MoS2 and graphene surfaces
    Darvishi, Mehdi
    Foroutan, Masumeh
    JOURNAL OF MOLECULAR LIQUIDS, 2017, 225 : 1 - 10
  • [6] Adsorption of ethylene oxide on doped monolayers of MoS2: A DFT study
    Szary, Maciej J.
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2021, 265
  • [7] Adsorption Behavior of Nucleobases on Doped MoS2 Monolayer: A DFT Study
    Yang, Huiru
    Liu, Yang
    Gao, Chenshan
    Meng, Lei
    Liu, Yufei
    Tang, Xiaosheng
    Ye, Huaiyu
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (51): : 30949 - 30957
  • [8] Adsorption for SO2 gas molecules on B, N, P and Al doped MoS2: The DFT study
    Zhang, Ruiyang
    Fu, Da
    Ni, Jiaming
    Sun, Chunbao
    Song, Shaoxian
    CHEMICAL PHYSICS LETTERS, 2019, 715 : 273 - 277
  • [9] Adsorption and dissociation of NO2 on MoS2 doped with p-block elements
    Szary, Maciej J.
    Babelek, Jakub A.
    Florjan, Dominik M.
    SURFACE SCIENCE, 2021, 712
  • [10] The Role of Water in Adsorption-based CO2 Capture Systems
    Marx, Dorian
    Joss, Lisa
    Hefti, Max
    Pini, Ronny
    Mazzotti, Marco
    GHGT-11, 2013, 37 : 107 - 114