Boundary problems for harmonic functions and norm estimates for inverses of singular integrals in two dimensions

被引:1
|
作者
Mitrea, I [1 ]
机构
[1] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
基金
美国国家科学基金会;
关键词
curvilinear polygons; Dirichlet problem; layer potentials; Neumann problem; tangential derivative problem;
D O I
10.1080/01630560500431076
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish sharp well-posedness results for tangential derivative problems for the Laplacian with data in L-p, 1 < p < infinity, on curvilinear polygons. Furthermore, we produce norm estimates/formulas for inverses of singular integral operators relevant for the Dirichlet, Neumann, tangential derivative, and transmission boundary value problems associated with the Laplacian in a distinguished subclass of Lipschitz domains in two dimensions. Our approach relies on Calderon-Zygmund theory and Mellin transform techniques.
引用
收藏
页码:851 / 878
页数:28
相关论文
共 50 条