Enhanced dissipation for the 2D couette flow in critical space

被引:30
|
作者
Masmoudi, Nader [1 ,3 ]
Zhao, Weiren [2 ]
机构
[1] New York Univ Abu Dhabi, NYUAD Res Inst, POB 129188, Abu Dhabi, U Arab Emirates
[2] New York Univ Abu Dhabi, Dept Math, Abu Dhabi, U Arab Emirates
[3] NYU, Courant Inst Math Sci, New York, NY USA
关键词
Couette flow; critical space; enhanced dissipation; inviscid damping; Navier Stokes;
D O I
10.1080/03605302.2020.1791180
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the 2D incompressible Navier-Stokes equations on T x R, with initial vorticity that is delta close in H-x(log) L-y(2) to -1(the vorticity of the Couette flow (y, 0)). We prove that if delta << nu(1/2), where nu denotes the viscosity, then the solution of the Navier-Stokes equation approaches some shear flow which is also close to Couette flow for time t >> nu(-1/3) by a mixing-enhanced dissipation effect and then converges back to Couette flow when t -> +infinity. In particular, we show the nonlinear enhanced dissipation and the inviscid damping results in the almost critical space H-x(log) L-y(2) subset of L-x,y(2).
引用
收藏
页码:1682 / 1701
页数:20
相关论文
共 50 条