Bayesian linear inverse problems in regularity scales

被引:12
|
作者
Gugushvili, Shota [1 ]
van der Vaart, Aad [2 ]
Yan, Dong [2 ]
机构
[1] Wageningen Univ & Res, Biometris, Wageningen, Netherlands
[2] Leiden Univ, Math Inst, Leiden, Netherlands
基金
欧洲研究理事会;
关键词
Adaptive estimation; Gaussian prior; Hilbert scale; Linear inverse problem; Nonparametric Bayesian estimation; Posterior contraction rate; Random series prior; Regularity scale; White noise; POSTERIOR CONTRACTION RATES; CONVERGENCE-RATES; ADAPTIVE ESTIMATION; HILBERT SCALES; RECONSTRUCTION; DISTRIBUTIONS; FUNCTIONALS; EQUATIONS; PRIORS;
D O I
10.1214/19-AIHP1029
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We obtain rates of contraction of posterior distributions in inverse problems defined by scales of smoothness classes. We derive abstract results for general priors, with contraction rates determined by Galerkin approximation. The rate depends on the amount of prior concentration near the true function and the prior mass of functions with inferior Galerkin approximation. We apply the general result to non-conjugate series priors, showing that these priors give near optimal and adaptive recovery in some generality, Gaussian priors, and mixtures of Gaussian priors, where the latter are also shown to be near optimal and adaptive. The proofs are based on general testing and approximation arguments, without explicit calculations on the posterior distribution. We are thus not restricted to priors based on the singular value decomposition of the operator. We illustrate the results with examples of inverse problems resulting from differential equations.
引用
收藏
页码:2081 / 2107
页数:27
相关论文
共 50 条
  • [1] Bayesian Linear Inverse Problems in Regularity Scales with Discrete Observations
    Yan, Dong
    van der Vaart, Aad
    Gugushvili, Shota
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2024, 86 (SUPPL 1): : 228 - 254
  • [2] Convergence rate for the Bayesian approach to linear inverse problems
    Hofinger, Andreas
    Pikkarainen, Hanna K.
    INVERSE PROBLEMS, 2007, 23 (06) : 2469 - 2484
  • [3] Bayesian Gaussian Mixture Linear Inversion for Geophysical Inverse Problems
    Grana, Dario
    Fjeldstad, Torstein
    Omre, Henning
    MATHEMATICAL GEOSCIENCES, 2017, 49 (04) : 493 - 515
  • [4] A scale invariant Bayesian method to solve linear inverse problems
    MohammadDjafari, A
    Idier, J
    MAXIMUM ENTROPY AND BAYESIAN METHODS - PROCEEDINGS OF THE THIRTEENTH INTERNATIONAL WORKSHOP ON MAXIMUM ENTROPY AND BAYESIAN METHODS, SANTA BARBARA, CALIFORNIA, U.S.A., 1993, 1996, 62 : 121 - 134
  • [5] On global normal linear approximations for nonlinear Bayesian inverse problems
    Nicholson, Ruanui
    Petra, Noemi
    Villa, Umberto
    Kaipio, Jari P.
    INVERSE PROBLEMS, 2023, 39 (05)
  • [6] Bayesian Gaussian Mixture Linear Inversion for Geophysical Inverse Problems
    Dario Grana
    Torstein Fjeldstad
    Henning Omre
    Mathematical Geosciences, 2017, 49 : 493 - 515
  • [7] WIDE STABLE NEURAL NETWORKS: SAMPLE REGULARITY, FUNCTIONAL CONVERGENCE AND BAYESIAN INVERSE PROBLEMS
    Soto, Tomas
    INVERSE PROBLEMS AND IMAGING, 2025,
  • [8] OPTIMAL LOW-RANK APPROXIMATIONS OF BAYESIAN LINEAR INVERSE PROBLEMS
    Spantini, Alessio
    Solonen, Antti
    Cui, Tiangang
    Martin, James
    Tenorio, Luis
    Marzouk, Youssef
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (06): : A2451 - A2487
  • [9] Scale invariant Markov models for Bayesian inversion of linear inverse problems
    Brette, S
    Idier, J
    MohammadDjafari, A
    MAXIMUM ENTROPY AND BAYESIAN METHODS - PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL WORKSHOP ON MAXIMUM ENTROPY AND BAYESIAN METHODS, CAMBRIDGE, ENGLAND, 1994, 1996, 70 : 199 - 212
  • [10] GOAL-ORIENTED OPTIMAL APPROXIMATIONS OF BAYESIAN LINEAR INVERSE PROBLEMS
    Spantini, Alessio
    Cui, Tiangang
    Willcox, Karen
    Tenorio, Luis
    Marzouk, Youssef
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (05): : S167 - S196