Parameterized algorithms for the Module Motif problem

被引:0
|
作者
Zehavi, Meirav [1 ]
机构
[1] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
关键词
Module motif; Pattern matching; Parameterized algorithm; Kernelization; Computational biology; TOPOLOGY-FREE; ALIGNMENT;
D O I
10.1016/j.ic.2016.08.005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
MODULE Mont is a pattern matching problem that was introduced in the context of biological networks. Informally, given a multiset of colors P and a graph H in which each node is associated with a set of colors, it asks if P occurs in a module of H (i.e., in a set of nodes that have the same neighborhood outside the set). We present three parameterized algorithms for this problem, which both measure similarity between matched colors and handle deletions and insertions of colors to P. Moreover, we observe that the running times of two of them might be essentially tight, and prove that the problem is unlikely to admit a polynomial kernel. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:179 / 193
页数:15
相关论文
共 50 条
  • [1] Parameterized Algorithms for Module Motif
    Zehavi, Meirav
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2013, 2013, 8087 : 825 - 836
  • [2] Deterministic parameterized algorithms for the Graph Motif problem
    Pinter, Ron Y.
    Shachnai, Hadas
    Zehavi, Meirav
    DISCRETE APPLIED MATHEMATICS, 2016, 213 : 162 - 178
  • [3] Deterministic Parameterized Algorithms for the Graph Motif Problem
    Pinter, Ron Y.
    Shachnai, Hadas
    Zehavi, Meirav
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE, PT II, 2014, 8635 : 589 - 600
  • [4] Parameterized algorithms for Module Map problems
    Sommer, Frank
    Komusiewicz, Christian
    DISCRETE APPLIED MATHEMATICS, 2020, 283 : 396 - 416
  • [5] Parameterized Algorithms for Module Map Problems
    Sommer, Frank
    Komusiewicz, Christian
    COMBINATORIAL OPTIMIZATION, ISCO 2018, 2018, 10856 : 376 - 388
  • [6] Parameterized algorithms for load coloring problem
    Gutin, Gregory
    Jones, Mark
    INFORMATION PROCESSING LETTERS, 2014, 114 (08) : 446 - 449
  • [7] Parameterized Algorithms for Graph Burning Problem
    Kare, Anjeneya Swami
    Reddy, I. Vinod
    COMBINATORIAL ALGORITHMS, IWOCA 2019, 2019, 11638 : 304 - 314
  • [8] Parameterized Algorithms for the Matrix Completion Problem
    Ganian, Robert
    Kanj, Iyad
    Ordyniak, Sebastian
    Szeider, Stefan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [9] Parameterized Algorithms for the Happy Set Problem
    Asahiro, Yuichi
    Eto, Hiroshi
    Hanaka, Tesshu
    Lin, Guohui
    Miyano, Eiji
    Terabaru, Ippei
    WALCOM: ALGORITHMS AND COMPUTATION (WALCOM 2020), 2020, 12049 : 323 - 328
  • [10] Parameterized algorithms for the Happy Set problem
    Asahiro, Yuichi
    Eto, Hiroshi
    Hanaka, Tesshu
    Lin, Guohui
    Miyano, Eiji
    Terabaru, Ippei
    DISCRETE APPLIED MATHEMATICS, 2021, 304 : 32 - 44