共 50 条
On the minimal modules for exceptional Lie algebras: Jordan blocks and stabilizers
被引:11
|作者:
Stewart, David I.
[1
]
机构:
[1] Newcastle Univ, Sch Math & Stat, Herschel Bldg, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
来源:
关键词:
MAXIMAL-SUBGROUPS;
SMOOTHNESS;
ELEMENTS;
D O I:
10.1112/S1461157016000103
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let G be a simple simply connected exceptional algebraic group of type G(2), F-4, E-6 or E-7 over an algebraically closed field k of characteristic p > 0 with g = Lie(G). For each nilpotent orbit G center dot e of g, we list the Jordan blocks of the action of e on the minimal induced module V-min of g. We also establish when the centralizers G(v) of vectors v is an element of V-min and stabilizers Stab(G)< v > of 1-spaces < v > subset of V-min are smooth; that is, when dim G(v) = dim g(v) or dim Stab(G)< v > = dim Stab(g)< v >.
引用
收藏
页码:235 / 258
页数:24
相关论文