Multilevel Preconditioners for the Interior Penalty Discontinuous Galerkin Method II - Quantitative Studies

被引:0
|
作者
Brix, Kolja [1 ]
Pinto, Martin Campos [2 ]
Dahmen, Wolfgang [1 ]
Massjung, Ralf [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Geometrie & Prakt Math, D-52056 Aachen, Germany
[2] Univ Strasbourg, CNRS, UMR 7501, Inst Rech Math Avancee, F-67084 Strasbourg, France
关键词
Interior penalty method; energy-stable splittings; admissible averaging operators; frames; multilevel Schwarz preconditioners; discontinuous Galerkin methods; APPROXIMATIONS; DECOMPOSITION;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is concerned with preconditioners for interior penalty discontinuous Galerkin discretizations of second-order elliptic boundary value problems. We extend earlier related results in [7] in the following sense. Several concrete realizations of splitting the nonconforming trial spaces into a conforming and (remaining) nonconforming part are identified and shown to give rise to uniformly bounded condition numbers. These asymptotic results are complemented by numerical tests that shed some light on their respective quantitative behavior.
引用
收藏
页码:296 / 325
页数:30
相关论文
共 50 条
  • [1] A multilevel preconditioner for the interior penalty discontinuous Galerkin method
    Brix, Kolja
    Pinto, Martin Campos
    Dahmen, Wolfgang
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) : 2742 - 2768
  • [2] CONVERGENCE ANALYSIS OF AN ADAPTIVE INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD
    Hoppe, R. H. W.
    Kanschat, G.
    Warburton, T.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 47 (01) : 534 - 550
  • [3] Robust Interior Penalty Discontinuous Galerkin Methods
    Dong, Zhaonan
    Georgoulis, Emmanuil H.
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (02)
  • [4] Robust Interior Penalty Discontinuous Galerkin Methods
    Zhaonan Dong
    Emmanuil H. Georgoulis
    Journal of Scientific Computing, 2022, 92
  • [5] STABILITY ANALYSIS OF THE INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD FOR THE WAVE EQUATION
    Agut, Cyril
    Diaz, Julien
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (03): : 903 - 932
  • [6] On the Suboptimality of the p-Version Interior Penalty Discontinuous Galerkin Method
    Emmanuil H. Georgoulis
    Edward Hall
    Jens Markus Melenk
    Journal of Scientific Computing, 2010, 42
  • [7] On the Suboptimality of the p-Version Interior Penalty Discontinuous Galerkin Method
    Georgoulis, Emmanuil H.
    Hall, Edward
    Melenk, Jens Markus
    JOURNAL OF SCIENTIFIC COMPUTING, 2010, 42 (01) : 54 - 67
  • [8] Interior penalty discontinuous Galerkin method for magnetic induction equation with resistivity
    Sarkar, Tanmay
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 314 : 212 - 227
  • [9] AN EQUILIBRATED A POSTERIORI ERROR ESTIMATOR FOR THE INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD
    Braess, D.
    Fraunholz, T.
    Hoppe, R. H. W.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (04) : 2121 - 2136
  • [10] A Discontinuous Galerkin Finite Element Method without Interior Penalty Terms
    Gao, Fuzheng
    Ye, Xiu
    Zhang, Shangyou
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2022, 14 (02) : 299 - 314