Low-power neural networks for semantic segmentation of satellite images

被引:15
|
作者
Bahl, Gaetan [1 ,2 ]
Daniel, Lionel [2 ]
Moretti, Matthieu [2 ]
Lafarge, Florent [1 ]
机构
[1] Univ Cote dAzur, INRIA, Nice, France
[2] IRT St Exupery, Toulouse, France
关键词
D O I
10.1109/ICCVW.2019.00302
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semantic segmentation methods have made impressive progress with deep learning. However, while achieving higher and higher accuracy, state-of-the-art neural networks overlook the complexity of architectures, which typically feature dozens of millions of trainable parameters. Consequently, these networks requires high computational ressources and are mostly not suited to perform on edge devices with tight resource constraints, such as phones, drones, or satellites. In this work, we propose two highly-compact neural network architectures for semantic segmentation of images, which are up to 100 000 times less complex than state-of-the-art architectures while approaching their accuracy. To decrease the complexity of existing networks, our main ideas consist in exploiting lightweight encoders and decoders with depth-wise separable convolutions and decreasing memory usage with the removal of skip connections between encoder and decoder. Our architectures are designed to be implemented on a basic FPGA such as the one featured on the Intel Altera Cyclone V family of SoCs. We demonstrate the potential of our solutions in the case of binary segmentation of remote sensing images, in particular for extracting clouds and trees from RGB satellite images.
引用
收藏
页码:2469 / 2476
页数:8
相关论文
共 50 条
  • [1] Semantic segmentation of satellite images of airports using convolutional neural networks
    Gorbachev, V. A.
    Krivorotov, I. A.
    Markelov, A. O.
    Kotlyarova, E., V
    COMPUTER OPTICS, 2020, 44 (04) : 636 - +
  • [2] Semantic segmentation on small datasets of satellite images using convolutional neural networks
    Younis, Mohammed Chachan
    Keedwell, Edward
    JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (04)
  • [3] Using Deep Networks for Semantic Segmentation of Satellite Images
    Selea, Teodora
    Neagul, Marian
    2017 19TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2017), 2017, : 409 - 415
  • [4] CloudRCNN: A Framework Based on Deep Neural Networks for Semantic Segmentation of Satellite Cloud Images
    Shi, Gonghe
    Zuo, Baohe
    APPLIED SCIENCES-BASEL, 2022, 12 (11):
  • [5] Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks
    Wurm, Michael
    Stark, Thomas
    Zhu, Xiao Xiang
    Weigand, Matthias
    Taubenboeck, Hannes
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 150 : 59 - 69
  • [6] Semantic Segmentation of Aerial Images With Shuffling Convolutional Neural Networks
    Chen, Kaiqiang
    Fu, Kun
    Yan, Menglong
    Gao, Xin
    Sun, Xian
    Wei, Xin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (02) : 173 - 177
  • [7] Skin lesion segmentation method for dermoscopic images with convolutional neural networks and semantic segmentation
    Thanh, Dang N. H.
    Nguyen Hoang Hai
    Le Minh Hieu
    Tiwari, Prayag
    Prasath, V. B. Surya
    COMPUTER OPTICS, 2021, 45 (01) : 122 - 129
  • [8] Semantic segmentation of human oocyte images using deep neural networks
    Anna Targosz
    Piotr Przystałka
    Ryszard Wiaderkiewicz
    Grzegorz Mrugacz
    BioMedical Engineering OnLine, 20
  • [9] Semantic segmentation of high spatial resolution images with deep neural networks
    Yang, Haiping
    Yu, Bo
    Luo, Jiancheng
    Chen, Fang
    GISCIENCE & REMOTE SENSING, 2019, 56 (05) : 749 - 768
  • [10] Convolutional Neural Networks for Semantic Segmentation of Multispectral Remote Sensing Images
    Lopez, Josue
    Santos, Stewart
    Atzberger, Clement
    Torres, Deni
    2018 IEEE 10TH LATIN-AMERICAN CONFERENCE ON COMMUNICATIONS (IEEE LATINCOM), 2018,