Long-time dynamics of KdV solitary waves over a variable bottom

被引:15
|
作者
Dejak, SI
Sigal, IM
机构
[1] Univ Toronto, Dept Math, Bahen Ctr, Toronto, ON M5S 2E4, Canada
[2] Univ Notre Dame, Notre Dame, IN 46556 USA
关键词
D O I
10.1002/cpa.20120
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the 2 variable-bottom, generalized Korteweg-de Vries (bKdV) equation partial derivative(1)u = -partial derivative(x)(partial derivative(2)(x)u + f(u) - b(t,x)u), where f is a nonlinearity and b is a small, bounded, and slowly varying function related to the varying depth of a channel of water. Many variable-coefficient KdV-type equations, including the variable-coefficient, variable-bottom KdV equation, can be rescaled into the bKdV. We study the long-time behavior of solutions with initial conditions close to a stable, b = 0 solitary wave. We prove that for long time intervals, such solutions have the form of the solitary wave whose center and scale evolve according to a certain dynamical law involving the function b(t,x) plus an H(1)(R)-small fluctuation. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:869 / 905
页数:37
相关论文
共 50 条
  • [1] The long-time behavior of solitary waves for the weakly damped KdV equation
    Yansheng Zhong
    Riguang Wu
    Boundary Value Problems, 2023
  • [2] The long-time behavior of solitary waves for the weakly damped KdV equation
    Zhong, Yansheng
    Wu, Riguang
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [3] Long-time dynamics of variable coefficient modified Korteweg-de Vries solitary waves
    Dejak, S. I.
    Jonsson, B. L. G.
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (07)
  • [4] LONG-TIME STABILITY OF SMALL FPU SOLITARY WAVES
    Khan, Amjad
    Pelinovsky, Dmitry E.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (04) : 2065 - 2075
  • [5] Dynamics of Trapped Solitary Waves for the Forced KdV Equation
    Lee, Sunmi
    SYMMETRY-BASEL, 2018, 10 (05):
  • [6] ON THE LONG-TIME BEHAVIOR OF A GENERALIZED KDV EQUATION
    SIDI, A
    SULEM, C
    SULEM, PL
    ACTA APPLICANDAE MATHEMATICAE, 1986, 7 (01) : 35 - 47
  • [7] Trapped solitary waves over an uneven bottom
    D. S. Denisenko
    N. I. Makarenko
    The European Physical Journal Plus, 135
  • [8] Trapped solitary waves over an uneven bottom
    Denisenko, D. S.
    Makarenko, N. I.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (08):
  • [9] Long-time dynamics of the modulational instability of deep water waves
    Ablowitz, MJ
    Hammack, J
    Henderson, D
    Schober, CM
    PHYSICA D, 2001, 152 : 416 - 433
  • [10] The long-time decay of rotating homogeneous flows over variable topography
    Sanson, L. Zavala
    DYNAMICS OF ATMOSPHERES AND OCEANS, 2007, 44 (01) : 29 - 50