Long-step strategies in interior-point primal-dual methods

被引:10
|
作者
Nesterov, Y
机构
[1] Ctr. for Operations Res. Economet., 1348 Louvain-la-Neuve
关键词
nonlinear programming; conic problem; interior-point methods; self-concordant barrier; path-following methods; potential-reduction methods;
D O I
10.1007/BF02614378
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we analyze from a unique point of view the behavior of path-following and primal-dual potential reduction methods on nonlinear conic problems. We demonstrate that most interior-point methods with O(root n ln(1/epsilon)) efficiency estimate can be considered as different strategies of minimizing a convex primal-dual potential function in an extended primal-dual space. Their efficiency estimate is a direct consequence of large local norm of the gradient of the potential function along a central path. It is shown that the neighborhood of this path is a region of the fastest decrease of the potential. Therefore the long-step path-following methods are, in a sense, the best potential-reduction strategies. We present three examples of such long-step strategies. We prove also an efficiency estimate for a pure primal-dual potential reduction method, which can be considered as an implementation of a penalty strategy based on a functional proximity measure. Using the convex primal dual potential, we prove efficiency estimates for Karmarkar-type and Dikin-type methods as applied to a homogeneous reformulation of the initial primal-dual problem.
引用
收藏
页码:47 / 94
页数:48
相关论文
共 50 条