An overview of decadal climate predictability in a multi-model ensemble by climate model MIROC

被引:63
|
作者
Chikamoto, Yoshimitsu [1 ]
Kimoto, Masahide [1 ]
Ishii, Masayoshi [2 ,3 ]
Mochizuki, Takashi [3 ]
Sakamoto, Takashi T. [3 ]
Tatebe, Hiroaki [3 ]
Komuro, Yoshiki [3 ]
Watanabe, Masahiro [1 ]
Nozawa, Toru [4 ]
Shiogama, Hideo [4 ]
Mori, Masato [1 ]
Yasunaka, Sayaka [4 ]
Imada, Yukiko [5 ]
机构
[1] Univ Tokyo, Atmosphere & Ocean Res Inst, Kashiwa, Chiba 2778568, Japan
[2] Meteorol Res Inst, Tsukuba, Ibaraki 305, Japan
[3] Japan Agcy Marine Earth Sci & Technol, Yokohama, Kanagawa, Japan
[4] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan
[5] Tokyo Inst Technol, Dept Civil & Environm Engn, Tokyo 152, Japan
关键词
Decadal climate prediction; Multi-model ensemble; AMO; PDO; SURFACE-TEMPERATURE; PREDICTION SKILL; VARIABILITY; RAINFALL; PACIFIC; OSCILLATION; IMPACT; ENSO;
D O I
10.1007/s00382-012-1351-y
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Decadal climate predictability is examined in hindcast experiments by a multi-model ensemble using three versions of the coupled atmosphere-ocean model MIROC. In these hindcast experiments, initial conditions are obtained from an anomaly assimilation procedure using the observed oceanic temperature and salinity with prescribed natural and anthropogenic forcings on the basis of the historical data and future emission scenarios in the Intergovernmental Panel of Climate Change. Results of the multi-model ensemble in our hindcast experiments show that predictability of surface air temperature (SAT) anomalies on decadal timescales mostly originates from externally forced variability. Although the predictable component of internally generated variability has considerably smaller SAT variance than that of externally forced variability, ocean subsurface temperature variability has predictive skills over almost a decade, particularly in the North Pacific and the North Atlantic where dominant signals associated with Pacific decadal oscillation (PDO) and the Atlantic multidecadal oscillation (AMO) are observed. Initialization enhances the predictive skills of AMO and PDO indices and slightly improves those of global mean temperature anomalies. Improvement of these predictive skills in the multi-model ensemble is higher than that in a single-model ensemble.
引用
收藏
页码:1201 / 1222
页数:22
相关论文
共 50 条
  • [1] An overview of decadal climate predictability in a multi-model ensemble by climate model MIROC
    Yoshimitsu Chikamoto
    Masahide Kimoto
    Masayoshi Ishii
    Takashi Mochizuki
    Takashi T. Sakamoto
    Hiroaki Tatebe
    Yoshiki Komuro
    Masahiro Watanabe
    Toru Nozawa
    Hideo Shiogama
    Masato Mori
    Sayaka Yasunaka
    Yukiko Imada
    Climate Dynamics, 2013, 40 : 1201 - 1222
  • [2] An assessment of a multi-model ensemble of decadal climate predictions
    Bellucci, A.
    Haarsma, R.
    Gualdi, S.
    Athanasiadis, P. J.
    Caian, M.
    Cassou, C.
    Fernandez, E.
    Germe, A.
    Jungclaus, J.
    Kroeger, J.
    Matei, D.
    Mueller, W.
    Pohlmann, H.
    Salas y Melia, D.
    Sanchez, E.
    Smith, D.
    Terray, L.
    Wyser, K.
    Yang, S.
    CLIMATE DYNAMICS, 2015, 44 (9-10) : 2787 - 2806
  • [3] An assessment of a multi-model ensemble of decadal climate predictions
    A. Bellucci
    R. Haarsma
    S. Gualdi
    P. J. Athanasiadis
    M. Caian
    C. Cassou
    E. Fernandez
    A. Germe
    J. Jungclaus
    J. Kröger
    D. Matei
    W. Müller
    H. Pohlmann
    D. Salas y Melia
    E. Sanchez
    D. Smith
    L. Terray
    K. Wyser
    S. Yang
    Climate Dynamics, 2015, 44 : 2787 - 2806
  • [4] Estimates of Decadal Climate Predictability From an Interactive Ensemble Model
    Zhang, Wei
    Kirtman, Ben
    GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (06) : 3387 - 3397
  • [5] Predictability of the Wintertime Western Pacific Pattern in the APEC Climate Center Multi-Model Ensemble
    Kim, Eung-Sup
    Kryjov, Vladimir N.
    Ahn, Joong-Bae
    ATMOSPHERE, 2022, 13 (11)
  • [6] Real-time multi-model decadal climate predictions
    Smith, Doug M.
    Scaife, Adam A.
    Boer, George J.
    Caian, Mihaela
    Doblas-Reyes, Francisco J.
    Guemas, Virginie
    Hawkins, Ed
    Hazeleger, Wilco
    Hermanson, Leon
    Ho, Chun Kit
    Ishii, Masayoshi
    Kharin, Viatcheslav
    Kimoto, Masahide
    Kirtman, Ben
    Lean, Judith
    Matei, Daniela
    Merryfield, William J.
    Mueller, Wolfgang A.
    Pohlmann, Holger
    Rosati, Anthony
    Wouters, Bert
    Wyser, Klaus
    CLIMATE DYNAMICS, 2013, 41 (11-12) : 2875 - 2888
  • [7] Real-time multi-model decadal climate predictions
    Doug M. Smith
    Adam A. Scaife
    George J. Boer
    Mihaela Caian
    Francisco J. Doblas-Reyes
    Virginie Guemas
    Ed Hawkins
    Wilco Hazeleger
    Leon Hermanson
    Chun Kit Ho
    Masayoshi Ishii
    Viatcheslav Kharin
    Masahide Kimoto
    Ben Kirtman
    Judith Lean
    Daniela Matei
    William J. Merryfield
    Wolfgang A. Müller
    Holger Pohlmann
    Anthony Rosati
    Bert Wouters
    Klaus Wyser
    Climate Dynamics, 2013, 41 : 2875 - 2888
  • [8] On the use of observations in assessment of multi-model climate ensemble
    Xu, Donghui
    Ivanov, Valeriy Y.
    Kim, Jongho
    Fatichi, Simone
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2019, 33 (11-12) : 1923 - 1937
  • [9] On the use of observations in assessment of multi-model climate ensemble
    Donghui Xu
    Valeriy Y. Ivanov
    Jongho Kim
    Simone Fatichi
    Stochastic Environmental Research and Risk Assessment, 2019, 33 : 1923 - 1937
  • [10] The use of the multi-model ensemble in probabilistic climate projections
    Tebaldi, Claudia
    Knutti, Reto
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 365 (1857): : 2053 - 2075