Comprehensive studies in the Black Sea and the Sea of Azov in the Summer of 2012

被引:1
|
作者
Matishov, G. G. [1 ,2 ,4 ]
Nabozhenko, M. V. [1 ,2 ,4 ]
Shokhin, I. V. [1 ,2 ]
Zolotareva, A. E. [1 ,2 ]
Bulysheva, N. I. [1 ,2 ]
Semin, V. L. [1 ,2 ]
Polshin, V. V. [1 ,2 ]
Povazhnyi, V. V. [1 ,2 ]
Verbitskyi, R. E. [1 ,2 ]
Verbitskyi, E. V. [1 ,2 ]
Sapozhnikov, F. V. [3 ]
Spiridonov, V. A. [3 ]
Zalota, A. K. [3 ]
机构
[1] Russian Acad Sci, Southern Sci Ctr, Rostov Na Donu 344006, Russia
[2] Russian Acad Sci, Inst Arid Zones, Southern Sci Ctr, Rostov Na Donu 344006, Russia
[3] Russian Acad Sci, PP Shirshov Oceanol Inst, Moscow 117997, Russia
[4] Russian Acad Sci, Kola Sci Ctr, Murmansk Maritime Biol Inst, Murmansk, Russia
基金
俄罗斯基础研究基金会;
关键词
Bottom Sediment; Splash Zone; Artificial Reef; Photic Layer; Allochthonous Material;
D O I
10.1134/S0001437013030077
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
The shelf zones of the Black Sea, Taman Bay, and the Sea of Azov are currently subjected to gross load related to the impact of invasive species, large-scale construction activities near the coast, intensive recreation activity, water pollution in large cities and ports, active navigation, unreasonable coastal arrangement, and dam construction. Another factor substantially affecting the composition of bottom sediments and, thus, the benthos environment is the terrigenous material carried by rivers in the course of catastrophic overflows. An example is the Kubansk flood in 2012, which significantly affected the sea coast near Novorossiysk, Gelendzhik, and Divnomorsk. The intensive onshore dumping results in the delivery of abundant allochthonous material, bottom silting causing changes in the dominants in the benthos associations, a decrease in the photic layer and the death of the phytobenthos, and also debris formation at the bottom. Debris can play the role of artificial reefs contributory for the formation of periphytic biocoenoses.
引用
收藏
页码:374 / 376
页数:3
相关论文
共 50 条
  • [1] Comprehensive studies in the Black Sea and the Sea of Azov in the Summer of 2012
    G. G. Matishov
    M. V. Nabozhenko
    I. V. Shokhin
    A. E. Zolotareva
    N. I. Bulysheva
    V. L. Semin
    V. V. Polshin
    V. V. Povazhnyi
    R. E. Verbitskyi
    E. V. Verbitskyi
    F. V. Sapozhnikov
    V. A. Spiridonov
    A. K. Zalota
    Oceanology, 2013, 53 : 374 - 376
  • [2] Studies on the fauna of copepoda in novorossiysk bay of the black sea and in the sea of Azov
    Selifonova, Zh.P.
    Shmeleva, A.A.
    Hydrobiological Journal, 2008, 44 (01): : 26 - 33
  • [3] Numerical model of the circulation of the Black Sea and the Sea of Azov
    Zalesny, V. B.
    Diansky, N. A.
    Fomin, V. V.
    Moshonkin, S. N.
    Demyshev, S. G.
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2012, 27 (01) : 95 - 111
  • [4] Tsunami occurrence on the coasts of the Black Sea and the Sea of Azov
    Nikonov, AA
    FIZIKA ZEMLI, 1997, (01): : 86 - 96
  • [5] Checklist of Syngnathidae Parasites in the Black Sea and the Sea of Azov
    Polyakova, T. A.
    Kornyychuk, Yu. M.
    Pronkina, N. V.
    INLAND WATER BIOLOGY, 2023, 16 (06) : 1141 - 1158
  • [6] Checklist of Syngnathidae Parasites in the Black Sea and the Sea of Azov
    T. A. Polyakova
    Yu. M. Kornyychuk
    N. V. Pronkina
    Inland Water Biology, 2023, 16 : 1141 - 1158
  • [7] Modern diversity of the macroalgae of the Sea of Azov, the Black Sea, and the Caspian Sea
    O. V. Stepanyan
    Doklady Earth Sciences, 2014, 458 : 1158 - 1160
  • [8] Modern Diversity of the Macroalgae of the Sea of Azov, the Black Sea, and the Caspian Sea
    Stepanyan, O. V.
    DOKLADY EARTH SCIENCES, 2014, 458 (01) : 1158 - 1160
  • [9] Basic Criteria for Comprehensive Classification of Russia’s Azov–Black Sea Coasts
    R. D. Kosyan
    V. V. Krylenko
    Oceanology, 2018, 58 : 470 - 478
  • [10] SOME ASPECTS OF ECOLOGY OF DECAPOD LARVAE IN BLACK SEA AND SEA OF AZOV
    MAKAROV, YN
    OKEANOLOGIYA, 1976, 16 (06): : 1076 - 1081