This paper investigates Rayleigh waves in magneto-electro-elastic half planes. The magneto-electro-elastic materials are assumed to possess hexagonal (6 mm) symmetry. Sixteen sets of boundary conditions are considered and the corresponding frequency equations are derived. It is found that for any of the 16 sets of boundary conditions, the Rayleigh waves, if exist, are always non-dispersive. Numerical results show that both the material coefficients and boundary conditions can significantly influence the Rayleigh wave properties in magneto-electro-elastic half planes.