A Unified Mixed-Effects Model for Rare-Variant Association in Sequencing Studies

被引:114
|
作者
Sun, Jianping [1 ]
Zheng, Yingye [1 ]
Hsu, Li [1 ]
机构
[1] Fred Hutchinson Canc Res Ctr, Div Publ Hlth Sci, Seattle, WA 98104 USA
关键词
set-based association; rare variants; variant characteristics; score statistics; Fisher's procedure; COMMON DISEASES; GENES;
D O I
10.1002/gepi.21717
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
For rare-variant association analysis, due to extreme low frequencies of these variants, it is necessary to aggregate them by a prior set (e.g., genes and pathways) in order to achieve adequate power. In this paper, we consider hierarchical models to relate a set of rare variants to phenotype by modeling the effects of variants as a function of variant characteristics while allowing for variant-specific effect (heterogeneity). We derive a set of two score statistics, testing the group effect by variant characteristics and the heterogeneity effect. We make a novel modification to these score statistics so that they are independent under the null hypothesis and their asymptotic distributions can be derived. As a result, the computational burden is greatly reduced compared with permutation-based tests. Our approach provides a general testing framework for rare variants association, which includes many commonly used tests, such as the burden test [Li and Leal, 2008] and the sequence kernel association test [Wu etal., 2011], as special cases. Furthermore, in contrast to these tests, our proposed test has an added capacity to identify which components of variant characteristics and heterogeneity contribute to the association. Simulations under a wide range of scenarios show that the proposed test is valid, robust, and powerful. An application to the Dallas Heart Study illustrates that apart from identifying genes with significant associations, the new method also provides additional information regarding the source of the association. Such information may be useful for generating hypothesis in future studies.
引用
收藏
页码:334 / 344
页数:11
相关论文
共 50 条
  • [1] Bayesian model comparison for rare-variant association studies
    Venkataraman, Guhan Ram
    DeBoever, Christopher
    Tanigawa, Yosuke
    Aguirre, Matthew
    Ioannidis, Alexander G.
    Mostafavi, Hakhamanesh
    Spencer, Chris C. A.
    Poterba, Timothy
    Bustamante, Carlos D.
    Daly, Mark J.
    Pirinen, Matti
    Rivas, Manuel A.
    AMERICAN JOURNAL OF HUMAN GENETICS, 2021, 108 (12) : 2354 - 2367
  • [2] Rare-variant association methods
    Orli Bahcall
    Nature Genetics, 2012, 44 (11) : 1178 - 1178
  • [3] Rare-variant association study
    Wang, Yin
    Chan, Ying Wai
    CELL GENOMICS, 2024, 4 (05):
  • [4] Rare-Variant Studies to Complement Genome-Wide Association Studies
    Sazonovs, A.
    Barrett, J. C.
    ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, VOL 19, 2018, 19 : 97 - 112
  • [5] Rare-Variant Association Testing for Sequencing Data with the Sequence Kernel Association Test
    Wu, Michael C.
    Lee, Seunggeun
    Cai, Tianxi
    Li, Yun
    Boehnke, Michael
    Lin, Xihong
    AMERICAN JOURNAL OF HUMAN GENETICS, 2011, 89 (01) : 82 - 93
  • [6] Exome sequencing of Finnish isolates enhances rare-variant association power
    Locke, Adam E.
    Steinberg, Karyn Meltz
    Chiang, Charleston W. K.
    Service, Susan K.
    Havulinna, Aki S.
    Stell, Laurel
    Pirinen, Matti
    Abel, Haley J.
    Chiang, Colby C.
    Fulton, Robert S.
    Jackson, Anne U.
    Kang, Chul Joo
    Kanchi, Krishna L.
    Koboldt, Daniel C.
    Larson, David E.
    Nelson, Joanne
    Nicholas, Thomas J.
    Pietila, Arto
    Ramensky, Vasily
    Ray, Debashree
    Scott, Laura J.
    Stringham, Heather M.
    Vangipurapu, Jagadish
    Welch, Ryan
    Yajnik, Pranav
    Yin, Xianyong
    Eriksson, Johan G.
    Ala-Korpela, Mika
    Jarvelin, Marjo-Riitta
    Mannikko, Minna
    Laivuori, Hannele
    Dutcher, Susan K.
    Stitziel, Nathan O.
    Wilson, Richard K.
    Hall, Ira M.
    Sabatti, Chiara
    Palotie, Aarno
    Salomaa, Veikko
    Laakso, Markku
    Ripatti, Samuli
    Boehnke, Michael
    Freimer, Nelson B.
    NATURE, 2019, 572 (7769) : 323 - +
  • [7] Exome sequencing of Finnish isolates enhances rare-variant association power
    Adam E. Locke
    Karyn Meltz Steinberg
    Charleston W. K. Chiang
    Susan K. Service
    Aki S. Havulinna
    Laurel Stell
    Matti Pirinen
    Haley J. Abel
    Colby C. Chiang
    Robert S. Fulton
    Anne U. Jackson
    Chul Joo Kang
    Krishna L. Kanchi
    Daniel C. Koboldt
    David E. Larson
    Joanne Nelson
    Thomas J. Nicholas
    Arto Pietilä
    Vasily Ramensky
    Debashree Ray
    Laura J. Scott
    Heather M. Stringham
    Jagadish Vangipurapu
    Ryan Welch
    Pranav Yajnik
    Xianyong Yin
    Johan G. Eriksson
    Mika Ala-Korpela
    Marjo-Riitta Järvelin
    Minna Männikkö
    Hannele Laivuori
    Susan K. Dutcher
    Nathan O. Stitziel
    Richard K. Wilson
    Ira M. Hall
    Chiara Sabatti
    Aarno Palotie
    Veikko Salomaa
    Markku Laakso
    Samuli Ripatti
    Michael Boehnke
    Nelson B. Freimer
    Nature, 2019, 572 : 323 - 328
  • [8] RVMMAT: Rare-Variant Mixed Model Association Tests for Binary Traits in Structured and Related Samples
    Chen, Han
    Lin, Xihong
    GENETIC EPIDEMIOLOGY, 2016, 40 (07) : 627 - 627
  • [9] Dynamic Scan Procedure for Detecting Rare-Variant Association Regions in Whole-Genome Sequencing Studies
    Li, Zilin
    Li, Xihao
    Liu, Yaowu
    Shen, Jincheng
    Chen, Han
    Zhou, Hufeng
    Morrison, Alanna C.
    Boerwinkle, Eric
    Lin, Xihong
    AMERICAN JOURNAL OF HUMAN GENETICS, 2019, 104 (05) : 802 - 814
  • [10] Optimal tests for rare variant effects in sequencing association studies
    Lee, Seunggeun
    Wu, Michael C.
    Lin, Xihong
    BIOSTATISTICS, 2012, 13 (04) : 762 - 775