Holographic integration of T(T)over-bar & J(T)over-bar via O(d, d)

被引:0
|
作者
Araujo, T. [1 ]
Colgain, E. O. [1 ,2 ]
Sakatani, Y. [3 ]
Sheikh-Jabbari, M. M. [4 ]
Yavartanoo, H. [5 ]
机构
[1] Postech, Asia Pacific Ctr Theoret Phys, Pohang 37673, South Korea
[2] Postech, Dept Phys, Pohang 37673, South Korea
[3] Kyoto Prefectural Univ Med, Dept Phys, Kyoto 6060823, Japan
[4] Inst Res Fundamental Sci IPM, Sch Phys, POB 19395-5531, Tehran, Iran
[5] Chinese Acad Sci, State Key Lab Theoret Phys, Inst Theoret Phys, Beijing 100190, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Integrable Field Theories; String Duality; AdS-CFT Correspondence; T-DUALITY; DEFORMATIONS;
D O I
10.1007/JHEP03(2019)168
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Prompted by the recent developments in integrable single trace T (T) over bar and J (T) over bar deformations of 2d CFTs, we analyse such deformations in the context of AdS(3)/CFT2 from the dual string worldsheet CFT viewpoint. We observe that the finite form of these deformations can be recast as O(d, d) transformations, which are an integrated form of the corresponding Exactly Marginal Deformations (EMD) in the worldsheet Wess-Zumino-Witten (WZW) model, thereby generalising the Yang-Baxter class that includes TsT. Furthermore, the equivalence between O (d, d) transformations and marginal deformations of WZW models, proposed by Hassan & Sen for Abelian chiral currents, can be extended to non-Abelian chiral currents to recover a well-known constraint on EMD in the worldsheet CFT. We also argue that such EMD are also solvable from the worldsheet theory viewpoint.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] T(T)over-bar, J(T)over-bar, T(J)over-bar and string theory
    Chakraborty, Soumangsu
    Giveon, Amit
    Kutasov, David
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (38)
  • [2] Holographic complexity of LST and single trace T(T)over-bar, J(T)over-bar and T(J)over-bar deformations
    Katoch, Gaurav
    Mitra, Swejyoti
    Roy, Shubho R.
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, (10):
  • [3] TsT, black holes, and T(T)over-bar + J(T)over-bar + T(J)over-bar
    Apolo, Luis
    Song, Wei
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, (04):
  • [4] T(T)over-bar, J(T)over-bar, T(J)over-bar partition sums from string theory
    Hashimoto, Akikazu
    Kutasov, David
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, (02):
  • [6] Evidence for t(t)over-barγ production and measurement of σt(t)over-barγ/σt(t)over-bar
    Aaltonen, T.
    Alvarez Gonzalez, B.
    Amerio, S.
    Amidei, D.
    Anastassov, A.
    Annovi, A.
    Antos, J.
    Apollinari, G.
    Appel, J. A.
    Apresyan, A.
    Arisawa, T.
    Artikov, A.
    Asaadi, J.
    Ashmanskas, W.
    Auerbach, B.
    Aurisano, A.
    Azfar, F.
    Badgett, W.
    Barbaro-Galtieri, A.
    Barnes, V. E.
    Barnett, B. A.
    Barria, P.
    Bartos, P.
    Bauce, M.
    Bauer, G.
    Bedeschi, F.
    Beecher, D.
    Behari, S.
    Bellettini, G.
    Bellinger, J.
    Benjamin, D.
    Beretvas, A.
    Bhatti, A.
    Binkley, M.
    Bisello, D.
    Bizjak, I.
    Bland, K. R.
    Blumenfeld, B.
    Bocci, A.
    Bodek, A.
    Bortoletto, D.
    Boudreau, J.
    Boveia, A.
    Brau, B.
    Brigliadori, L.
    Brisuda, A.
    Bromberg, C.
    Brucken, E.
    Bucciantonio, M.
    Budagov, J.
    PHYSICAL REVIEW D, 2011, 84 (03):
  • [7] e+e-→b(b)over-bar-u(d)over-barμ-(ν)over-barμ with a t(t)over-bar production
    Yuasa, F
    Kurihara, Y
    Kawabata, S
    PHYSICS LETTERS B, 1997, 414 (1-2) : 178 - 186
  • [8] Nonlocal charges from marginal deformations of 2D CFTs: Holographic T(T)over-bar & T(J)over-bar, and Yang-Baxter deformations
    Araujo, Thiago
    PHYSICAL REVIEW D, 2020, 101 (02)
  • [9] Determination of κt from t(t)over-bar, t(t)over-bart(t)over-bar, and others
    Usai, Emanuele
    NINTH ANNUAL CONFERENCE ON LARGE HADRON COLLIDER PHYSICS, LHCP2021, 2021,
  • [10] (B)over-bar → Dτ(ν)over-barτ vs. (B)over-bar → Dμ(ν)over-barμ
    Becirevic, Damir
    Kosnik, Nejc
    Tayduganov, Andrey
    PHYSICS LETTERS B, 2012, 716 (01) : 208 - 213