Decay rates for solutions of a Maxwell system with nonlinear boundary damping

被引:0
|
作者
Eller, M. [1 ]
Lagnese, J. E. [1 ]
Nicaise, S. [2 ]
机构
[1] Georgetown Univ, Dept Math, Washington, DC 20057 USA
[2] Univ Valenciennes & Hainaut Cambresis, MACS, Inst Sci & Tech Valenciennes, F-59313 Valenciennes 9, France
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2002年 / 21卷 / 01期
基金
美国国家科学基金会;
关键词
Maxwell system; energy decay rates; nonlinear Silver-Muller boundary condition;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to obtain decay rates for the electromagnetic energy of solutions of a dynamic Maxwell system with spatially varying dielectric constant epsilon and magnetic permeability mu in a bounded, connected domain Omega. Dissipation is introduced into the system through a nonlinear Silver-Muller boundary condition. A general result on energy decay is proved when partial derivative Omega is an element of C-infinity and consists of a single connected component, and epsilon, mu are of class C-infinity((Omega) over bar) and satisfy a certain technical condition. Examples are provided that illustrate the general result and, in particular, it is shown how dissipative boundary conditions may be constructed that lead to a specified energy decay rate.
引用
收藏
页码:135 / 165
页数:31
相关论文
共 50 条
  • [1] Energy decay rates for solutions of Maxwell's system with a memory boundary condition
    Nicaise, Serge
    Pignotti, Cristina
    COLLECTANEA MATHEMATICA, 2007, 58 (03) : 327 - 342
  • [2] Normal trace inequalities and decay of solutions to the nonlinear Maxwell system with absorbing boundary
    Nutt, Richard
    Schnaubelt, Roland
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 532 (01)
  • [3] Uniform decay rates of coupled anisotropic elastodynamic/Maxwell equations with nonlinear damping
    da Luz, Cleverson Roberto
    Perla Menzala, Gustavo Alberto
    PORTUGALIAE MATHEMATICA, 2011, 68 (02) : 205 - 238
  • [4] Estimation of Vibration Decay Rates for a Nonlinear Flexible Beam with Nonlinear Boundary Damping
    Cheng, Yi
    Wu, Yuhu
    Wu, Yongxin
    Wang, Wei
    Zhao, Jun
    IFAC PAPERSONLINE, 2023, 56 (02): : 9924 - 9929
  • [5] General Energy Decay of Solutions for a Wave Equation with Nonlocal Damping and Nonlinear Boundary Damping
    Li Donghao
    Zhang Hongwei
    Hu Qingying
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2019, 32 (04): : 369 - 380
  • [6] Existence and uniform decay of solutions of a degenerate equation with nonlinear boundary damping
    Park, JY
    Kim, HM
    Kim, JA
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2003, 24 (3-4) : 257 - 272
  • [7] Regular solutions and energy decay for the equation of viscoelasticity with nonlinear damping on the boundary
    Cousin, AT
    Frota, CL
    Lar'kin, NA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 224 (02) : 273 - 296
  • [8] DECAY RATES FOR TIMOSHENKO SYSTEM WITH NONLINEAR ARBITRARY LOCALIZED DAMPING
    Santos, M. L.
    Almeida Junior, D. S.
    Rodrigues, J. H.
    Falcao Nascimento, Flavio A.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2014, 27 (1-2) : 1 - 26
  • [9] Decay rates for Bresse system with arbitrary nonlinear localized damping
    Charles, Wenden
    Soriano, J. A.
    Falcao Nascimento, Flavio A.
    Rodrigues, J. H.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) : 2267 - 2290
  • [10] Energy decay rates for solutions of the wave equation with boundary damping and source term
    Jong Yeoul Park
    Tae Gab Ha
    Yong Han Kang
    Zeitschrift für angewandte Mathematik und Physik, 2010, 61 : 235 - 265