Impact of K and Ba promoters on CO2 hydrogenation over Cu/Al2O3 catalysts at high pressure

被引:148
|
作者
Bansode, Atul [1 ]
Tidona, Bruno [2 ]
von Rohr, Philipp Rudolf [2 ]
Urakawa, Atsushi [1 ]
机构
[1] Inst Chem Res Catalonia ICIQ, Tarragona 43007, Spain
[2] ETH, Inst Proc Engn, CH-8092 Zurich, Switzerland
关键词
GAS SHIFT REACTION; METHANOL SYNTHESIS; CARBON-DIOXIDE; METHYL FORMATE; NITROUS-OXIDE; FORMIC-ACID; CU-ZNO; MECHANISM; DECOMPOSITION; SPECTROSCOPY;
D O I
10.1039/c2cy20604h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CO2 hydrogenation over K and Ba promoted Cu/Al2O3 catalyst was systematically investigated to study the promoter effects in a wide range of pressure conditions. The catalysts prepared by the impregnation method were characterized by XRD, physisorption, N2O-pulse chemisorption, H-2-TPR, and CO2-TPD techniques. The catalytic performance was evaluated using a fixed-bed microreactor for a pressure and temperature range of 0.40-36 MPa and 443-553 K. The influence of promoters on the formation of surface species present during the reaction was examined by in situ DRIFTS. As expected from thermodynamics, high pressure and low temperature are the favourable conditions to achieve high selectivity to methanol over the Cu/Al2O3 catalyst. Improved reaction performance towards methanol synthesis and reverse water-gas shift (RWGS) reaction was observed for the Ba and K promoted Cu/Al2O3 catalysts, respectively. Notably, with the Ba promotion the selectivity to methanol was enhanced to 62.2% compared to 46.6% of the unpromoted Cu/Al2O3 catalyst at 10 MPa and 473 K at the expense of a lowered CO2 conversion. In contrast, the K promoted catalyst exhibited high selectivity to CO (95.8%) under the same reaction conditions. Formation of dimethyl ether, significant over the unpromoted Cu/Al2O3 catalyst at 0.4-10 MPa, was strongly suppressed at 36 MPa. Ba and K promoters effectively suppressed the formation of dimethyl ether under all examined pressure conditions by weakening the acidity of the alumina support. The strong promotional effects of K was explained by the predominant coverage of both Cu and alumina surface sites, creating specific active sites stabilizing surface intermediate species and preferring the RWGS pathway. On the contrary, the Ba promoter covers the alumina surface exclusively and renders Cu accessible and more easily reducible, promoting methanol synthesis. The effects of promoters on the catalytic performance were found to be valid at low and at elevated pressures.
引用
收藏
页码:767 / 778
页数:12
相关论文
共 50 条
  • [1] High-Performance Cu/ZnO/Al2O3 Catalysts for CO2 Hydrogenation to Methanol
    Zhang, Heng
    Chen, Jiyi
    Han, Xiaoyu
    Pan, Yutong
    Hao, Ziwen
    Tang, Shixiong
    Zi, Xiaohui
    Zhang, Zhenmei
    Gao, Pengju
    Li, Maoshuai
    Lv, Jing
    Ma, Xinbin
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2024, 63 (14) : 6210 - 6221
  • [2] High-Performance Cu/ZnO/Al2O3 Catalysts for CO2 Hydrogenation to Methanol
    Zhang, Heng
    Chen, Jiyi
    Han, Xiaoyu
    Pan, Yutong
    Hao, Ziwen
    Tang, Shixiong
    Zi, Xiaohui
    Zhang, Zhenmei
    Gao, Pengju
    Li, Maoshuai
    Lv, Jing
    Ma, Xinbin
    Industrial and Engineering Chemistry Research, 2024, 63 (14): : 6210 - 6221
  • [3] HYDROGENATION OF CO2 OVER CO/CU/K CATALYSTS
    BAUSSART, H
    DELOBEL, R
    LEBRAS, M
    LEROY, JM
    JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS I, 1987, 83 : 1711 - 1718
  • [4] FORMATION OF METHYLFORMATE DURING HYDROGENATION OF CO2 OVER CU/ZNO/AL2O3 AND K-FE/L ZEOLITE CATALYSTS
    PARK, SE
    SHIM, EK
    LEE, KW
    KIM, PS
    ZEOLITES AND RELATED MICROPOROUS MATERIALS: STATE OF THE ART 1994, 1994, 84 : 1595 - 1602
  • [5] Effect of Ba and K addition and controlled spatial deposition of Rh in Rh/Al2O3 catalysts for CO2 hydrogenation
    Buechel, Robert
    Baiker, Alfons
    Pratsinis, Sotiris E.
    APPLIED CATALYSIS A-GENERAL, 2014, 477 : 93 - 101
  • [6] From CO or CO2?: space-resolved insights into high-pressure CO2 hydrogenation to methanol over Cu/ZnO/Al2O3
    Gaikwad, Rohit
    Reymond, Helena
    Phongprueksathat, Nat
    von Rohr, Philipp Rudolf
    Urakawa, Atsushi
    CATALYSIS SCIENCE & TECHNOLOGY, 2020, 10 (09) : 2763 - 2768
  • [7] Effect of alkali promoters (Li, Na, K) on the performance of Ru/Al2O3 catalysts for CO2 capture and hydrogenation to methane
    Cimino, Stefano
    Boccia, Francesca
    Lisi, Luciana
    JOURNAL OF CO2 UTILIZATION, 2020, 37 : 195 - 203
  • [8] CO2 fixation by hydrogenation over coprecipitated Co/Al2O3
    Akin, AN
    Ataman, M
    Aksoylu, AE
    Önsan, ZI
    REACTION KINETICS AND CATALYSIS LETTERS, 2002, 76 (02): : 265 - 270
  • [9] CO2 fixation by hydrogenation over coprecipitated Co/Al2O3
    A. Nilgün Akin
    Mustafa Ataman
    A. Erhan Aksoylu
    Z. Ilsen Önsan
    Reaction Kinetics and Catalysis Letters, 2002, 76 : 265 - 270
  • [10] CO2 Hydrogenation over Ru/χ-Al2O3 Catalyst
    Jeenjumras, Kanyanat
    Piticharoenphun, Sunthon
    Mekasuwandumrong, Okorn
    2017 INTERNATIONAL CONFERENCE ON SENSORS, MATERIALS AND MANUFACTURING (ICSMM 2017), 2018, 311