On the semi-local convergence of Halley's method under a center-Lipschitz condition on the second Frechet derivative

被引:5
|
作者
Ren, Hongmin [1 ]
Argyros, Ioannis K. [2 ]
机构
[1] Hangzhou Polytech, Coll Informat & Engn, Hangzhou 311402, Zhejiang, Peoples R China
[2] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
基金
中国国家自然科学基金;
关键词
Semi-local convergence; Halley's method; Center Lipschitz condition; Banach space; Hammerstein integral equation; KANTOROVICH CONDITIONS;
D O I
10.1016/j.amc.2012.04.078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We expand the applicability of Halley's method for solving nonlinear equations in a Banach space setting. We assume the existence of the center-Lipschitz condition on the second Frechet-derivative of the operator involved instead of Lipschitz condition used extensively in the literature [1,2,4,5]. The center-Lipschitz condition is satisfied in many interesting cases, where the Lipschitz condition is not satisfied [3,4,6,7,13]. We show that the semi-local convergence theorem established in [X. B. Xu, Y. H. Ling, Semilocal convergence for Halley's method under weak Lipschitz condition, Appl. Math. Comput. 215 ( 2009) 3057-3067] is not true. A new semi-local convergence theorem is established for Halley's method under the same condition. Our results are illustrated using a nonlinear Hammerstein integral equation of the second kind where our convergence criteria are satisfied but convergence criteria in earlier studies such as [1,2] are not satisfied. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:11488 / 11495
页数:8
相关论文
共 41 条
  • [1] SEMI-LOCAL CONVERGENCE OF THE NEWTON-HSS METHOD UNDER THE CENTER LIPSCHITZ CONDITION
    Zhong, Hongxiu
    Chen, Guoliang
    Guo, Xueping
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2019, 9 (01): : 85 - 99
  • [2] On the quadratic convergence of Newton's method under center-Lipschitz but not necessarily Lipschitz hypotheses
    Argyros, Ioannis K.
    Hilout, Said
    MATHEMATICA SLOVACA, 2013, 63 (03) : 621 - 638
  • [3] Local convergence of Super Halley's method under weaker conditions on Frechet derivative in Banach spaces
    Kumar, Abhimanyu
    Gupta, D. K.
    JOURNAL OF ANALYSIS, 2020, 28 (01): : 35 - 44
  • [4] Semilocal convergence for Halley's method under weak Lipschitz condition
    Xu, Xiubin
    Ling, Yonghui
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (08) : 3057 - 3067
  • [5] Starting points for Newton's method under a center Lipschitz condition for the second derivative
    Ezquerro, J. A.
    Hernandez-Veron, M. A.
    Magrenan, A. A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 330 : 721 - 731
  • [6] Convergence of Halley's method for operators with the bounded second Frechet-derivative in Banach spaces
    Argyros, Ioannis K.
    Cho, Yeol Je
    Ren, Hongmin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [7] CONVERGENCE BEHAVIOR FOR NEWTON-STEFFENSEN'S METHOD UNDER LIPSCHITZ CONDITION OF SECOND DERIVATIVE
    Yu, Shaohua
    Xu, Xiubin
    Li, Jianqiu
    Ling, Yonghui
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (06): : 2577 - 2600
  • [8] On the semilocal convergence of Newton-Kantorovich method under center-Lipschitz conditions
    Gutierrez, J. M.
    Magrenan, A. A.
    Romero, N.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 221 : 79 - 88
  • [9] SEMI-LOCAL CONVERGENCE OF A DERIVATIVE-FREE METHOD FOR SOLVING EQUATIONS
    Argyros, G.
    Argyros, M.
    Argyros, I. K.
    George, S.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2021, 10 (02): : 18 - 26
  • [10] How to Increase the Accessibility of Newton's Method for Operators With Center-Lipschitz Continuous First Derivative
    Ezquerro, J. A.
    Hernandez-Veron, M. A.
    Magrenan, A. A.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2022, 43 (03) : 350 - 363