A Framework Combining Multi-sequence MRI for Fully Automated Quantitative Analysis of Cardiac Global And Regional Functions

被引:0
|
作者
Zhuang, Xiahai [1 ]
Shi, Wenzhe [2 ]
Duckett, Simon [3 ,4 ]
Wang, Haiyan [2 ]
Razavi, Reza [3 ,4 ]
Hawkes, David [1 ]
Rueckert, Daniel [2 ]
Ourselin, Sebastien [1 ]
机构
[1] UCL, Ctr Med Image Comp, London WC1E 6BT, England
[2] Imperial Coll, Biomed Image Anal Grp, London, England
[3] Kings Coll London, Rayne Inst, London, England
[4] St Thomas Hosp, London, England
基金
英国工程与自然科学研究理事会;
关键词
PROPAGATION FRAMEWORK; REGISTRATION; SEGMENTATION; IMAGES; CINE;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In current clinical settings, there are several technological challenges to perform automated functional analysis from cardiac MRI. In this work, we present a framework to automatically segment the heart anatomy, define segments of the left ventricle, and extract myocardial motions for quantitative analysis of cardiac global and regional functions. This framework makes use of the cardiac MRI sequences that are widely available in clinical practice, and improves the performance of the automated processing by combining information from multiple MRI sequences. We employed 20 pathological datasets to evaluate the proposed framework where the automatic analysis was compared with the manual intervention assisted analysis. The results showed high correlation between the two methods for the global function analysis (volume: R-2>0.8, ejection fraction: R-2=0.88), and for the regional dyssynchrony analysis (wall motion: R-2=0.89; thickening: R-2=.81). We also found that the automated method could fully include apical and basal volume, resulting in consistent overestimation of the left ventricle volume (similar to 40mL, P<0.05) and small underestimation of ejection fraction (-0.024, P<0.001).
引用
收藏
页码:367 / 374
页数:8
相关论文
共 50 条
  • [1] Automated Multi-sequence Cardiac MRI Segmentation Using Supervised Domain Adaptation
    Vesal, Sulaiman
    Ravikumar, Nishant
    Maier, Andreas
    STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: MULTI-SEQUENCE CMR SEGMENTATION, CRT-EPIGGY AND LV FULL QUANTIFICATION CHALLENGES, 2020, 12009 : 300 - 308
  • [2] Combining Multi-Sequence and Synthetic Images for Improved Segmentation of Late Gadolinium Enhancement Cardiac MRI
    Campello, Victor M.
    Martin-Isla, Carlos
    Izquierdo, Cristian
    Petersen, Steffen E.
    Gonzalez Ballester, Miguel A.
    Lekadir, Karim
    STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: MULTI-SEQUENCE CMR SEGMENTATION, CRT-EPIGGY AND LV FULL QUANTIFICATION CHALLENGES, 2020, 12009 : 290 - 299
  • [3] Aligning Multi-Sequence CMR Towards Fully Automated Myocardial Pathology Segmentation
    Ding, Wangbin
    Li, Lei
    Qiu, Junyi
    Wang, Sihan
    Huang, Liqin
    Chen, Yinyin
    Yang, Shan
    Zhuang, Xiahai
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (12) : 3474 - 3486
  • [4] A multi-institutional meningioma MRI dataset for automated multi-sequence image segmentation
    Labella, Dominic
    Khanna, Omaditya
    McBurney-Lin, Shan
    Mclean, Ryan
    Nedelec, Pierre
    Rashid, Arif S.
    Tahon, Nourel hoda
    Altes, Talissa
    Baid, Ujjwal
    Bhalerao, Radhika
    Dhemesh, Yaseen
    Floyd, Scott
    Godfrey, Devon
    Hilal, Fathi
    Janas, Anastasia
    Kazerooni, Anahita
    Kent, Collin
    Kirkpatrick, John
    Kofler, Florian
    Leu, Kevin
    Maleki, Nazanin
    Menze, Bjoern
    Pajot, Maxence
    Reitman, Zachary J.
    Rudie, Jeffrey D.
    Saluja, Rachit
    Velichko, Yury
    Wang, Chunhao
    Warman, Pranav I.
    Sollmann, Nico
    Diffley, David
    Nandolia, Khanak K.
    Warren, Daniel, I
    Hussain, Ali
    Fehringer, John Pascal
    Bronstein, Yulia
    Deptula, Lisa
    Stein, Evan G.
    Taherzadeh, Mahsa
    Portela de Oliveira, Eduardo
    Haughey, Aoife
    Kontzialis, Marinos
    Saba, Luca
    Turner, Benjamin
    Bruesseler, Melanie M. T.
    Ansari, Shehbaz
    Gkampenis, Athanasios
    Weiss, David Maximilian
    Mansour, Aya
    Shawali, Islam H.
    SCIENTIFIC DATA, 2024, 11 (01)
  • [5] An Automatic Cardiac Segmentation Framework Based on Multi-sequence MR Image
    Liu, Yashu
    Wang, Wei
    Wang, Kuanquan
    Ye, Chengqin
    Luo, Gongning
    STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: MULTI-SEQUENCE CMR SEGMENTATION, CRT-EPIGGY AND LV FULL QUANTIFICATION CHALLENGES, 2020, 12009 : 220 - 227
  • [6] Analysis on the use of Multi-Sequence MRI Series for Segmentation of Abdominal Organs
    Selver, M. A.
    Selvi, E.
    Kavur, E.
    Dicle, O.
    3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES (IC-MSQUARE 2014), 2015, 574
  • [7] Multi-to-binary network (MTBNet) for automated multi-organ segmentation on multi-sequence abdominal MRI images
    Zhao, Xiangming
    Huang, Minxin
    Li, Laquan
    Qi, X. Sharon
    Tan, Shan
    PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (16):
  • [8] Breast tumor segmentation via deep correlation analysis of multi-sequence MRI
    Wang, Hongyu
    Wang, Tonghui
    Hao, Yanfang
    Ding, Songtao
    Feng, Jun
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2024, 62 (12) : 3801 - 3814
  • [9] Cervical tumour segmentation using multi-sequence MRI and linear discriminant analysis
    Torheim, T.
    Malinen, E.
    Indahl, U.
    Lyng, H.
    Kvaal, K.
    Futsaether, C.
    RADIOTHERAPY AND ONCOLOGY, 2015, 115 : S827 - S827
  • [10] An enhanced visual state space model for myocardial pathology segmentation in multi-sequence cardiac MRI
    Li, Shuning
    Li, Xiang
    Wang, Pingping
    Liu, Kunmeng
    Wei, Benzheng
    Cong, Jinyu
    MEDICAL PHYSICS, 2025,