Richtmyer-Meshkov instability in elastic-plastic media

被引:95
|
作者
Piriz, A. R. [1 ,2 ]
Lopez Cela, J. J. [1 ,2 ]
Tahir, N. A. [3 ]
Hoffmann, D. H. H. [4 ]
机构
[1] Univ Castilla La Mancha, ETSI Ind, E-13071 Ciudad Real, Spain
[2] Inst Invest Energet, Ciudad Real 13071, Spain
[3] Gesell Schwerionenforsch mbH, D-64291 Darmstadt, Germany
[4] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 05期
关键词
D O I
10.1103/PhysRevE.78.056401
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An analytical model for the linear Richtmyer-Meshkov instability in solids under conditions of high-energy density is presented, in order to describe the evolution of small perturbations at the solid-vacuum interface. The model shows that plasticity determines the maximum perturbation amplitude and provides simple scaling laws for it as well as for the time when it is reached. After the maximum amplitude is reached, the interface remains oscillating with a period that is determined by the elastic shear modulus. Extensive two-dimensional simulations are presented that show excellent agreement with the analytical model. The results suggest the possibility to experimentally evaluate the yield strength of solids under dynamic conditions by using a Richtmyer-Meshkov-instability-based technique.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Effects of the Atwood number on the Richtmyer-Meshkov instability in elastic-plastic media
    Chen, Qian
    Li, Li
    Zhang, Yousheng
    Tian, Baolin
    PHYSICAL REVIEW E, 2019, 99 (05)
  • [2] Richtmyer-Meshkov instability for elastic-plastic solids in converging geometries
    Ortega, A. Lopez
    Lombardini, M.
    Barton, P. T.
    Pullin, D. I.
    Meiron, D. I.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2015, 76 : 291 - 324
  • [3] Numerical simulations of elastic-plastic Richtmyer-Meshkov instability of multiple interfaces
    Liu, Xiangyi
    Lin, Fenghui
    Zhao, Zhiye
    Liu, Nansheng
    Lu, Xiyun
    PHYSICAL REVIEW E, 2024, 109 (03)
  • [4] The Richtmyer-Meshkov instability
    Brouillette, M
    ANNUAL REVIEW OF FLUID MECHANICS, 2002, 34 : 445 - 468
  • [5] Mechanism of the Richtmyer-Meshkov instability
    O. E. Ivashnev
    Fluid Dynamics, 2011, 46 : 514 - 524
  • [6] Hypervelocity Richtmyer-Meshkov instability
    Samtaney, R
    Meiron, DI
    PHYSICS OF FLUIDS, 1997, 9 (06) : 1783 - 1803
  • [7] Model for the Richtmyer-Meshkov instability
    Wouchuk, JG
    Nishihara, K
    ICPP 96 CONTRIBUTED PAPERS - PROCEEDINGS OF THE 1996 INTERNATIONAL CONFERENCE ON PLASMA PHYSICS, VOLS 1 AND 2, 1997, : 22 - 25
  • [8] Mechanism of the Richtmyer-Meshkov instability
    Ivashnev, O. E.
    FLUID DYNAMICS, 2011, 46 (04) : 514 - 524
  • [9] The Richtmyer-Meshkov instability in magnetohydrodynamics
    Wheatley, V.
    Samtaney, R.
    Pullin, D. I.
    PHYSICS OF FLUIDS, 2009, 21 (08)
  • [10] Experiments of the Richtmyer-Meshkov instability
    Prestridge, Katherine
    Orlicz, Gregory
    Balasubramanian, Sridhar
    Balakumar, B. J.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (2003):