Zero-Knowledge Accumulators and Set Algebra

被引:17
|
作者
Ghosh, Esha [1 ]
Ohrimenko, Olga [2 ]
Papadopoulos, Dimitrios [3 ]
Tamassia, Roberto [1 ]
Triandopoulos, Nikos [4 ]
机构
[1] Brown Univ, Dept Comp Sci, Providence, RI 02912 USA
[2] Microsoft Res, Cambridge, England
[3] Univ Maryland, College Pk, MD 20742 USA
[4] Stevens Inst Technol, Hoboken, NJ 07030 USA
关键词
Zero-knowledge dynamic and universal accumulators; Zero-knowledge updates; Zero-knowledge set algebra; Outsourced computation; Integrity; Privacy; Bilinear accumulators; Cloud privacy; UNIVERSAL ACCUMULATORS; EFFICIENT REVOCATION; COMMITMENTS; PAIRINGS;
D O I
10.1007/978-3-662-53890-6_3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Cryptographic accumulators allowto succinctly represent a set by an accumulation value with respect to which short (non-) membership proofs about the set can be efficiently constructed and verified. Traditionally, their security captures soundness but offers no privacy: Convincing proofs reliably encode set membership, but they may well leak information about the accumulated set. In this paper we put forward a strong privacy-preserving enhancement by introducing and devising zero-knowledge accumulators that additionally provide hiding guarantees: Accumulation values and proofs leak nothing about a dynamic set that evolves via element insertions/deletions. We formalize the new property using the standard real-ideal paradigm, namely demanding that an adaptive adversary with access to query/update oracles, cannot tell whether he interacts with honest protocol executions or a simulator fully ignorant of the set (even of the type of updates on it). We rigorously compare the new primitive to existing ones for privacy-preserving verification of set membership (or other relations) and derive interesting implications among related security definitions, showing that zero-knowledge accumulators offer stronger privacy than recent related works by Naor et al. [TCC 2015] and Derler et al. [CT-RSA 2015]. We construct the first dynamic universal zero-knowledge accumulator that we show to be perfect zero-knowledge and secure under the q-Strong Bilinear Diffie-Hellman assumption. Finally, we extend our new privacy notion and our new construction to provide privacy-preserving proofs also for an authenticated dynamic set collection-a primitive for efficiently verifying more elaborate set operations, beyond set-membership. We introduce a primitive that supports a zero-knowledge verifiable set algebra: Succinct proofs for union, intersection and set difference queries over a dynamically evolving collection of sets can be efficiently constructed and optimally verified, while-for the first time-they leak nothing about the collection beyond the query result.
引用
收藏
页码:67 / 100
页数:34
相关论文
共 50 条
  • [1] Succinct Zero-Knowledge Batch Proofs for Set Accumulators<bold> </bold>
    Campanelli, Matteo
    Fiore, Dario
    Han, Semin
    Kim, Jihye
    Kolonelos, Dimitris
    Oh, Hyunok
    PROCEEDINGS OF THE 2022 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, CCS 2022, 2022, : 455 - 469
  • [2] Curve Trees: Practical and Transparent Zero-Knowledge Accumulators
    Campanelli, Matteo
    Hall-Andersen, Mathias
    Kamp, Simon Holmgaard
    PROCEEDINGS OF THE 32ND USENIX SECURITY SYMPOSIUM, 2023, : 4391 - 4408
  • [3] An Expressive (Zero-Knowledge) Set Accumulator
    Zhang, Yupeng
    Katz, Jonathan
    Papamanthou, Charalampos
    2017 IEEE EUROPEAN SYMPOSIUM ON SECURITY AND PRIVACY (EUROS&P), 2017, : 158 - 173
  • [4] Notus: Dynamic Proofs of Liabilities from Zero-knowledge RSA Accumulators
    Xin, Jiajun
    Haghighi, Arman
    Tian, Xiangan
    Papadopoulos, Dimitrios
    PROCEEDINGS OF THE 33RD USENIX SECURITY SYMPOSIUM, SECURITY 2024, 2024, : 1453 - 1470
  • [5] Zero-knowledge proof for the independent set problem
    Caballero-Gil, P
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2005, E88A (05) : 1301 - 1302
  • [6] Linear Algebra with Sub-linear Zero-Knowledge Arguments
    Groth, Jens
    ADVANCES IN CRYPTOLOGY - CRYPTO 2009, 2009, 5677 : 192 - 208
  • [7] Zero-knowledge proofs for set membership: efficient, succinct, modular
    Benarroch, Daniel
    Campanelli, Matteo
    Fiore, Dario
    Gurkan, Kobi
    Kolonelos, Dimitris
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (11) : 3457 - 3525
  • [8] Improved Zero-Knowledge Identification with Improved Zero-Knowledge Identification with Lattices
    Cayrel, Pierre-Louis
    Lindner, Richard
    Rueckert, Markus
    Silva, Rosemberg
    PROVABLE SECURITY, 2010, 6402 : 1 - +
  • [9] Zero-Knowledge Proofs for Set Membership: Efficient, Succinct, Modular
    Benarroch, Daniel
    Campanelli, Matteo
    Fiore, Dario
    Gurkan, Kobi
    Kolonelos, Dimitris
    FINANCIAL CRYPTOGRAPHY AND DATA SECURITY, FC 2021, PT I, 2021, 12674 : 393 - 414
  • [10] Zero-knowledge proofs for set membership: efficient, succinct, modular
    Daniel Benarroch
    Matteo Campanelli
    Dario Fiore
    Kobi Gurkan
    Dimitris Kolonelos
    Designs, Codes and Cryptography, 2023, 91 : 3457 - 3525