Wavefront control in adaptive microscopy using Shack-Hartmann sensors with arbitrarily shaped pupils

被引:11
|
作者
Dong, Bing [1 ,2 ]
Booth, Martin J. [2 ,3 ]
机构
[1] Beijing Inst Technol, Sch Optoelect, Beijing 100081, Peoples R China
[2] Univ Oxford, Ctr Neural Circuits & Behav, Mansfield Rd, Oxford OX1 3SR, England
[3] Univ Oxford, Dept Engn Sci, Parks Rd, Oxford OX1 3PJ, England
来源
OPTICS EXPRESS | 2018年 / 26卷 / 02期
基金
欧洲研究理事会; 中国国家自然科学基金;
关键词
OPTICAL MICROSCOPY; DEFORMABLE MIRRORS; RECONSTRUCTION; ALGORITHM; ABERRATIONS; SYSTEM;
D O I
10.1364/OE.26.001655
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In adaptive optical microscopy of thick biological tissue, strong scattering and aberrations can change the effective pupil shape by rendering some Shack-Hartmann spots unusable. The change of pupil shape leads to a change of wavefront reconstruction or control matrix that should be updated accordingly. Modified slope and modal wavefront control methods based on measurements of a Shack-Hartmann wavefront sensor are proposed to accommodate an arbitrarily shaped pupil. Furthermore, we present partial wavefront control methods that remove specific aberration modes like tip, tilt and defocus from the control loop. The proposed control methods were investigated and compared by simulation using experimentally obtained aberration data. The performance was then tested experimentally through closed-loop aberration corrections using an obscured pupil. (c) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:1655 / 1669
页数:15
相关论文
共 50 条
  • [1] Using photodetectors in Shack-Hartmann wavefront sensors
    Antoshkin L.V.
    Lavrinov V.V.
    Lavrinova L.N.
    Lukin V.P.
    Optoelectronics, Instrumentation and Data Processing, 2012, 48 (2) : 146 - 152
  • [2] Adaptive threshold selection method for Shack-Hartmann wavefront sensors
    Xia, Ming-Liang
    Li, Chao
    Liu, Zhao-Nan
    Li, Da-Yu
    Hu, Li-Fa
    Xuan, Li
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2010, 18 (02): : 334 - 340
  • [3] Optical testing using Shack-Hartmann wavefront sensors
    Greivenkamp, JE
    Smith, DG
    Gappinger, RO
    Williby, GA
    OPTICAL ENGINEERING FOR SENSING AND NANOTECHNOLOGY (ICOSN 2001), 2001, 4416 : 260 - 263
  • [4] A comparison of the Shack-Hartmann and pyramid wavefront sensors
    Chew, Theam Yong
    Clare, Richard M.
    Lane, Richard G.
    OPTICS COMMUNICATIONS, 2006, 268 (02) : 189 - 195
  • [5] Wavefront reconstruction with the adaptive Shack-Hartmann sensor
    Seifert, L
    Tiziani, HJ
    Osten, W
    OPTICS COMMUNICATIONS, 2005, 245 (1-6) : 255 - 269
  • [6] Analysis of correlation algorithms for Shack-Hartmann wavefront sensors
    Xiong, Zhaojun
    Chen, Shanqiu
    Dong, Lizhi
    Yang, Ping
    Xu, Bing
    Zhao, Wang
    Yu, Xin
    Yang, Kangjian
    Wang, Xun
    He, Xing
    9TH INTERNATIONAL SYMPOSIUM ON ADVANCED OPTICAL MANUFACTURING AND TESTING TECHNOLOGIES: LARGE MIRRORS AND TELESCOPES, 2018, 10837
  • [7] Angular tolerance of Shack-Hartmann wavefront sensors with microaxicons
    Grunwald, Ruediger
    Huferath, Silke
    Bock, Martin
    Neumann, Uwe
    Langer, Stefan
    OPTICS LETTERS, 2007, 32 (11) : 1533 - 1535
  • [8] Miniaturized Shack-Hartmann Wavefront-Sensors for Starbugs
    Goodwin, Michael
    Richards, Samuel
    Zheng, Jessica
    Lawrence, Jon
    Leon-Saval, Sergio
    Argyros, Alexander
    Alcalde, Belen
    ADVANCES IN OPTICAL AND MECHANICAL TECHNOLOGIES FOR TELESCOPES AND INSTRUMENTATION, 2014, 9151
  • [9] Comparison of wavefront sensing with the Shack-Hartmann and pyramid sensors
    Clare, RM
    Lane, RG
    ADVANCEMENTS IN ADAPTIVE OPTICS, PTS 1-3, 2004, 5490 : 1211 - 1222
  • [10] Shack-Hartmann wavefront sensors move into new applications
    Beyerlein, M
    Pfund, J
    LASER FOCUS WORLD, 2006, 42 (04): : 90 - 93