The S-matrix of string bound states

被引:78
|
作者
Arutyunov, Gleb [1 ,2 ]
Frolov, Sergey [3 ]
机构
[1] Univ Utrecht, Inst Theoret Phys, NL-3508 TD Utrecht, Netherlands
[2] Univ Utrecht, Spinoza Inst, NL-3508 TD Utrecht, Netherlands
[3] Trinity Coll Dublin, Sch Math, Dublin 2, Ireland
基金
爱尔兰科学基金会;
关键词
D O I
10.1016/j.nuclphysb.2008.06.005
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We find the S-matrix which describes the scattering of two-particle bound states of the light-cone string sigma model on AdS(5) x S-5. We realize the M-particle bound state representation of the centrally extended stt(2 vertical bar 2) algebra on the space of homogeneous (super)symmetric polynomials of degree M depending on two bosonic and two fermionic variables. The scattering matrix S-MN of M- and N-particle bound states is a differential operator of degree M + N acting on the product of the corresponding polynomials. We require this operator to obey the invariance condition and the Yang-Baxter equation, and we determine it for the two cases M = 1, N = 2 and M = N = 2. We show that the S-matrices found satisfy generalized physical unitarity, CPT invariance, parity transformation rule and crossing symmetry. Although the dressing factor as a function of four parameters x(1)(+)center dot x(1)(-)center dot x(2)(+)center dot x(2)(-) is universal for scattering of any bound states, it obeys a crossing symmetry equation which depends on M and N. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:90 / 143
页数:54
相关论文
共 50 条
  • [1] On string S-matrix, bound states and TBA
    Arutyunov, Gleb
    Frolov, Sergey
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (12):
  • [2] S-MATRIX FOR SYSTEMS WITH BOUND STATES
    RUIJGROK, TW
    PHYSICA, 1962, 28 (02): : 198 - &
  • [3] ON BOUND STATES IN S-MATRIX THEORY
    BLOMBERG, T
    ARKIV FOR FYSIK, 1968, 37 (1-2): : 13 - &
  • [4] STUDY OF S-MATRIX NEAR BOUND-STATES IN CONTINUUM
    JAIN, AK
    SHASTRY, CS
    PRAMANA, 1977, 9 (03) : 311 - 320
  • [5] S-MATRIX METHOD FOR NUMERICAL DETERMINATION OF BOUND-STATES
    BHATIA, AK
    MADAN, RN
    PHYSICAL REVIEW A, 1973, 7 (02): : 523 - 525
  • [6] RECURSION RELATION FOR THE STRING S-MATRIX
    SAKAI, K
    PHYSICS LETTERS B, 1991, 255 (01) : 39 - 45
  • [7] S-matrix on effective string and compactified membrane
    Seibold, Fiona K.
    Tseytlin, Arkady A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (48)
  • [8] Coordinate Bethe ansatz for the string S-matrix
    de Leeuw, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (48) : 14413 - 14432
  • [9] STEADY STATES AND THE S-MATRIX
    HAMILTON, J
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1953, 49 (01): : 97 - 102
  • [10] Pade approximation of the S-matrix as a way of locating quantum resonances and bound states
    Rakityansky, S. A.
    Sofianos, S. A.
    Elander, N.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (49) : 14857 - 14869