The use of Artificial Neural Network in the Classification of EMG Signals

被引:11
|
作者
Ahsan, Md. R. [1 ]
Ibrahimy, Muhammad I. [1 ]
Khalifa, Othman O. [1 ]
机构
[1] Int Islamic Univ Malaysia, Fac Engn, Dept Elect & Comp Engn, Kuala Lumpur 53100, Malaysia
关键词
Electromyography; Artificial Neural Network; Back-Propagation; Levenberg-Marquardt algorithm; EMG Signal Classifier etc; PATTERN-RECOGNITION;
D O I
10.1109/MUSIC.2012.46
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents the design, optimization and performance evaluation of artificial neural network for the efficient classification of Electromyography (EMG) signals. The EMG signals are collected for different types of volunteer hand motion which are processed to extract some predefined features as inputs to the neural network. The time and time-frequency based extracted feature sets are used to train the neural network. A back-propagation neural network with Levenberg-Marquardt training algorithm has been employed for the classification of EMG signals. The results show that the designed and optimized network able to classify single channel EMG signals with an average success rate of 88.4%.
引用
收藏
页码:225 / 229
页数:5
相关论文
共 50 条
  • [1] Classification of EMG signals using wavelet neural network
    Subasi, Abdulhamit
    Yilmaz, Mustafa
    Ozcalik, Hasan Riza
    JOURNAL OF NEUROSCIENCE METHODS, 2006, 156 (1-2) : 360 - 367
  • [2] A Classification Method of Hand EMG Signals Based on Principal Component Analysis and Artificial Neural Network
    Caesarendra, Wahyu
    Lekson, Syahara U.
    Mustaqim, Khusnul A.
    Winoto, Andri R.
    Widyotriatmo, Augie
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON INSTRUMENTATION, CONTROL, AND AUTOMATION (ICA), 2016, : 22 - 27
  • [3] Classification of Myopathy and Neuropathy EMG signals using Neural Network
    Swaroop, R.
    Kaur, Maninder
    Suresh, Padma
    Sadhu, Pradip Kumar
    PROCEEDINGS OF 2017 IEEE INTERNATIONAL CONFERENCE ON CIRCUIT ,POWER AND COMPUTING TECHNOLOGIES (ICCPCT), 2017,
  • [4] Classification of Myopathy and Neuropathy EMG signals using Neural Network
    Swaroop, R.
    Kaur, Maninder
    Suresh, Padma
    Sadhu, Pradip Kumar
    PROCEEDINGS OF 2017 IEEE INTERNATIONAL CONFERENCE ON CIRCUIT ,POWER AND COMPUTING TECHNOLOGIES (ICCPCT), 2017,
  • [5] Classification of Uroflowmetry and EMG Signals of Pediatric Patients using Artificial Neural Networks
    Yalcinkaya, Fikret
    Caliskan, Ozan
    Erogul, Osman
    Irkilata, Cem
    Kopru, Burak
    Coguplugil, Emrah
    2017 MEDICAL TECHNOLOGIES NATIONAL CONGRESS (TIPTEKNO), 2017,
  • [6] Age Classification Based on EMG Signal Using Artificial Neural Network
    Hosen, Md. Rubel
    Hasan, Sabbir
    Hasan, Md. Mehedi
    Das, Rupak Kumar
    2ND INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATION COMMUNICATION TECHNOLOGY (ICEEICT 2015), 2015,
  • [7] VHDL modeling of EMG signal classification using artificial neural network
    Ahsan, M. R., 1600, Asian Network for Scientific Information (12):
  • [8] Classification of telephone signals with use of artificial neural networks
    Tarczynski, A
    Skorkowski, G
    Bushchenko, Y
    Igbinedion, I
    8TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL VI, PROCEEDINGS: IMAGE, ACOUSTIC, SIGNAL PROCESSING AND OPTICAL SYSTEMS, TECHNOLOGIES AND APPLICATIONS, 2004, : 108 - 113
  • [9] A novel pattern classification method for multivariate EMG signals using neural network
    Bu, N
    Arita, J
    Tsuji, T
    ADVANCES IN NATURAL COMPUTATION, PT 2, PROCEEDINGS, 2005, 3611 : 165 - 174
  • [10] Pattern Recognition Based Analysis Of Arm Emg Signals and Classification With Artificial Neural Networks
    Grivenc, Seyit Ahmet
    Ulutas, Mustafa
    Demir, Mengu
    2014 22ND SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2014, : 2209 - 2212