A multiobjective evolutionary approach to pattern recognition for robust diagnosis of process faults

被引:0
|
作者
Marcu, T [1 ]
机构
[1] Tech Univ Iasi, Dept Automat Control & Ind Informat, RO-6600 Iasi, Romania
关键词
fault diagnosis; robustness; pattern recognition; process parameter estimation; non-parametric classifiers; multiobjective optimization; genetic algorithms;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of robust model-based diagnosis of process faults is addressed in the framework of pattern recognition. Evolutionary algorithms of genetic type are used to solve both problems of feature selection and classifier design by means of multiobjective optimization. Process coefficients are directly identified by an on-line procedure. Symptoms are then evaluated by a non-parametric classifier. Application to a laboratory process is included. A diagnosis subsystem is designed and implemented in real-time to detect incipient faults in the components of a three-tank system. Copyright (C) 1998 IFAC.
引用
收藏
页码:1183 / 1188
页数:6
相关论文
共 50 条
  • [1] An Evolutionary Approach to Active Robust Multiobjective Optimisation
    Salomon, Shaul
    Purshouse, Robin C.
    Avigad, Gideon
    Fleming, Peter J.
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PT II, 2015, 9019 : 141 - 155
  • [2] Pattern recognition and diagnosis of faults in electrical machines
    Tsinghua Univ, Beijing, China
    Qinghua Daxue Xuebao, 3 (72-74):
  • [3] An improved robust topology optimization approach using multiobjective evolutionary algorithms
    Garcia-Lopez, N. P.
    Sanchez-Silva, M.
    Medaglia, A. L.
    Chateauneuf, A.
    COMPUTERS & STRUCTURES, 2013, 125 : 1 - 10
  • [4] PATTERN RECOGNITION APPROACH TO MEDICAL DIAGNOSIS
    KULIKOWSKI, CA
    IEEE TRANSACTIONS ON SYSTEMS SCIENCE AND CYBERNETICS, 1970, SSC6 (03): : 173 - +
  • [5] A SYNTACTIC PATTERN-RECOGNITION APPROACH FOR PROCESS MONITORING AND FAULT-DIAGNOSIS
    RENGASWAMY, R
    VENKATASUBRAMANIAN, V
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 1995, 8 (01) : 35 - 51
  • [6] Robust Process Monitoring Methodology for Detection and Diagnosis of Unobservable Faults
    Amin, Md. Tanjin
    Khan, Faisal
    Imtiaz, Syed
    Ahmed, Salim
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (41) : 19149 - 19165
  • [7] Gear faults diagnosis based on wavelet packet and fuzzy pattern recognition
    Fang, Sun
    Bing, Liu Yi
    Ming, Li
    Bo, Zhao Ling
    2006 CHINESE CONTROL CONFERENCE, VOLS 1-5, 2006, : 304 - +
  • [8] A Dissimilarity Learning Approach by Evolutionary Computation for Faults Recognition in Smart Grids
    De Santis, Enrico
    Mascioli, Fabio Massimo Frattale
    Sadeghian, Alireza
    Rizzi, Antonello
    COMPUTATIONAL INTELLIGENCE, IJCCI 2014, 2016, 620 : 113 - 130
  • [9] An evolutionary approach to multiobjective clustering
    Handl, Julia
    Knowles, Joshua
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2007, 11 (01) : 56 - 76
  • [10] Diagnosis of transient states: A pattern recognition approach
    Boudaoud, Nassim
    Masson, Mylene
    Journal Europeen des Systemes Automatises, 2000, 34 (05): : 689 - 708