Infinitely many periodic solutions for ordinary p-Laplacian systems

被引:12
|
作者
Li, Chun [1 ]
Agarwal, Ravi P. [2 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Texas A&M Univ, Dept Math, Kingsville, TX 78363 USA
基金
中国国家自然科学基金;
关键词
Periodic solutions; critical points; p-Laplacian systems; 2ND-ORDER HAMILTONIAN-SYSTEMS; BOUNDARY-VALUE-PROBLEMS; SUBHARMONIC SOLUTIONS; EXISTENCE; OSCILLATIONS;
D O I
10.1515/anona-2014-0048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some existence theorems are obtained for infinitely many periodic solutions of ordinary p-Laplacian systems by minimax methods in critical point theory.
引用
收藏
页码:251 / 261
页数:11
相关论文
共 50 条
  • [1] Existence of infinitely many periodic solutions for ordinary p-Laplacian systems
    Ma, Shiwang
    Zhang, Yuxiang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (01) : 469 - 479
  • [2] Infinitely many solutions for ordinary p-Laplacian systems
    Jebelean, Petru
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2008, 7 (02) : 267 - 275
  • [3] Infinitely many periodic solutions for ordinary p(t)-Laplacian differential systems
    Liu, Chungen
    Zhong, Yuyou
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (05): : 1653 - 1667
  • [4] On the existence of infinitely many periodic solutions for second-order ordinary p-Laplacian system
    Zhang, Qiongfen
    Tang, X. H.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2012, 19 (01) : 121 - 136
  • [5] Nonconstant periodic solutions for a class of ordinary p-Laplacian systems
    Li, Chun
    Agarwal, Ravi P.
    Pu, Yang
    Tang, Chun-Lei
    BOUNDARY VALUE PROBLEMS, 2016,
  • [6] Existence and multiplicity of periodic solutions for the ordinary p-Laplacian systems
    Liao K.
    Tang C.-L.
    Journal of Applied Mathematics and Computing, 2011, 35 (1-2) : 395 - 406
  • [7] Nonconstant periodic solutions for a class of ordinary p-Laplacian systems
    Chun Li
    Ravi P Agarwal
    Yang Pu
    Chun-Lei Tang
    Boundary Value Problems, 2016
  • [8] PERIODIC SOLUTIONS FOR AN ORDINARY P-LAPLACIAN SYSTEM
    Zhang, Xingyong
    Tang, Xianhua
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (03): : 1369 - 1396
  • [9] Some existence results on periodic solutions of ordinary p-Laplacian systems
    Xu, Bo
    Tang, Chun-Lei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (02) : 1228 - 1236
  • [10] Periodic solutions of non-autonomous ordinary p-Laplacian systems
    Lv X.
    Lu S.
    Yan P.
    Journal of Applied Mathematics and Computing, 2011, 35 (1-2) : 11 - 18