Room-temperature synthesis and electrocatalysis of carbon nanotubes supported palladium-iron alloy nanoparticles

被引:9
|
作者
Ji, Yigang [1 ]
Zhao, Ruopeng [2 ]
Zhang, Guojie [2 ]
Chen, Yu [2 ]
Tang, Yawen [2 ]
Lu, Tianhong [2 ]
机构
[1] Jiangsu Second Normal Univ, Dept Chem, Nanjing 210013, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Coll Chem & Mat Sci, Jiangsu Collaborat Innovat Ctr Biomed Funct Mat, Jiangsu Key Lab New Power Batteries, Nanjing 210023, Jiangsu, Peoples R China
关键词
Carbon nanotubes; Palladium hexacyanoferrate; Palladium-iron alloy; Electrostatic interaction; Methanol oxidation reaction; CATALYTIC-ACTIVITY; FE NANOPARTICLES; OXYGEN; ACID; DECHLORINATION; STABILITY; METAL; ORR; NI; CO;
D O I
10.1016/j.electacta.2013.08.106
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Carbon nanotubes (CNTs) supported palladium-iron bimetallic nanoparticles (Pd-Fe/CNTs) catalyst is synthesized using palladium hexacyanoferrate (PdHCF) as reaction precursor. In this method, the negatively charged PdHCF nanoparticles self-assemble on the positively charged polydiallyldimethylammonium chloride (PDDA) functionalized CNTs through electrostatic interaction, and then are reduced to Pd-Fe alloy nanoparticles by sodium borohydride. The physicochemical properties of Pd-Fe/CNTs are investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). These structural analyses reveal that the Pd-Fe/CNTs catalyst possesses the high alloying degree and the small particle size. Electrochemical measurements show that the eletrocatalytic activity of the Pd-Fe/MWCNTs catalyst for the methanol oxidation is better than that of the Pd/CNTs catalyst, which originates from the synergistic effect between Pd atom and Fe atom. (c) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:898 / 902
页数:5
相关论文
共 50 条
  • [1] Ultrasonic synthesis of supported palladium nanoparticles for room-temperature Suzuki–Miyaura coupling
    Jiazhe Li
    Xuefeng Bai
    Journal of Materials Science, 2016, 51 : 9108 - 9122
  • [2] Ultrasonic synthesis of supported palladium nanoparticles for room-temperature Suzuki-Miyaura coupling
    Li, Jiazhe
    Bai, Xuefeng
    JOURNAL OF MATERIALS SCIENCE, 2016, 51 (19) : 9108 - 9122
  • [3] Carbon supported Palladium-Iron nanoparticles with uniform alloy structure as methanol-tolerant electrocatalyst for oxygen reduction reaction
    Pan, Yu
    Zhang, Fan
    Wu, Ke
    Lu, Zhaoyang
    Chen, Yu
    Zhou, Yiming
    Tang, Yawen
    Lu, Tianhong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (04) : 2993 - 3000
  • [4] Template synthesis of nanotubes by room-temperature coalescence of metal nanoparticles
    Sehayek, T
    Lahav, M
    Popovitz-Biro, R
    Vaskevich, A
    Rubinstein, I
    CHEMISTRY OF MATERIALS, 2005, 17 (14) : 3743 - 3748
  • [5] ALLOY FORMATION AT THE DEPOSITION OF PALLADIUM ON GOLD AT ROOM-TEMPERATURE
    GOSSNER, K
    MIZERA, E
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1981, 125 (02): : 359 - 366
  • [6] Room-temperature synthesis and characterization of carbon-encapsulated molybdenum nanoparticles
    Eremin, A. V.
    Gurentsov, E. V.
    Kolotushkin, R. N.
    Musikhin, S. A.
    MATERIALS RESEARCH BULLETIN, 2018, 103 : 186 - 196
  • [7] Room-temperature synthesis of single-wall carbon nanotubes by an electrochemical process
    Shawky, Ahmed
    Yasuda, Satoshi
    Murakoshi, Kei
    CARBON, 2012, 50 (11) : 4184 - 4191
  • [8] Room-Temperature Synthesis of Soluble Carbon Nanotubes by the Sonication of Graphene Oxide Nanosheets
    Wang, Shuai
    Tang, Lena Ai Ling
    Bao, Qiaoliang
    Lin, Ming
    Deng, Suzi
    Goh, Bee Min
    Loh, Kian Ping
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (46) : 16832 - 16837
  • [9] Room-temperature synthesis of carbon nanofibers
    Slusher, Laura E.
    Fahlman, Bradley D.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [10] Solvation of Carbon Nanotubes in a Room-Temperature Ionic Liquid
    Shim, Youngseon
    Kim, Hyung J.
    ACS NANO, 2009, 3 (07) : 1693 - 1702