Three-state model for femtosecond broadband stimulated Raman scattering

被引:26
|
作者
Sun, Z. [1 ]
Qiu, Xue Q. [1 ]
Lu, J. [2 ]
Zhang, Dong H. [3 ,4 ]
Lee, Soo-Y. [1 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637616, Singapore
[2] Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China
[3] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Mol React Dynam, Dalian 116023, Peoples R China
[4] Chinese Acad Sci, Dalian Inst Chem Phys, Ctr Theoret & Computat Chem, Dalian 116023, Peoples R China
关键词
femtosecond; stimulated; Raman scattering; inverse Raman scattering; nonlinear processes;
D O I
10.1002/jrs.2040
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Stimulated Raman scattering (SRS) is analyzed with a three-state model. Using a diagrammatic density-matrix formalism, SRS by a pair of Raman pump and probe pulses, with observation along the probe direction, is described principally by eight terms. The eight terms can be grouped into four sets, which are labeled as SRS or IRS (inverse Raman scattering): SRS(I), SRS(ID, IRS(I), and IRS(II). Specializing to the case of femtosecond SRS (FSRS) by a picosecond (ps) Raman pump pulse and a femtosecond (fs) probe pulse, the spectra for the four sets of terms under off-resonance and resonance conditions were calculated. The results obtained can explain the FSRS experimental observations from a (decaying) stationary vibrational state, such as (1) high wavenumber resolution (determined by the narrow bandwidth Raman pump pulse) and high time resolution (deter-mined by the fs probe pulse), (2) Stokes gain vs anti-Stokes loss in off-resonance FSRS, and (3) dispersive lineshapes in resonance FSRS. Copyright (C) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:1568 / 1577
页数:10
相关论文
共 50 条
  • [1] Mapping photoisomerization dynamics on a three-state model potential energy surface in bacteriorhodopsin using femtosecond stimulated Raman spectroscopy
    Wang, Ziyu
    Chen, Yu
    Jiang, Jiaming
    Zhao, Xin
    Liu, Weimin
    CHEMICAL SCIENCE, 2025, 16 (08) : 3713 - 3719
  • [2] Femtosecond Broadband Stimulated Raman Spectroscopy
    Mathies, Richard A.
    2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 2928 - 2929
  • [3] Femtosecond broadband stimulated Raman spectroscopy
    Lee, Soo-Y.
    Yoon, Sangwoon
    Mathies, Richard A.
    INTERNATIONAL CONFERENCE ON MATERIALS FOR ADVANCED TECHNOLOGIES (ICMAT 2005), 2006, 28 : 36 - 41
  • [4] Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods
    McCamant, DW
    Kukura, P
    Yoon, S
    Mathies, RA
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (11): : 4971 - 4980
  • [5] Stimulated Raman scattering of femtosecond Bessel pulses
    Klewitz, S
    Sogomonian, S
    Woerner, M
    Herminghaus, S
    OPTICS COMMUNICATIONS, 1998, 154 (04) : 186 - 190
  • [6] Stimulated Raman scattering spectra with femtosecond pumping
    Bespalov, VG
    Efimov, YN
    Krylov, VN
    Staselko, DI
    Rebane, A
    Ollikainen, O
    Wild, U
    IZVESTIYA AKADEMII NAUK SERIYA FIZICHESKAYA, 1998, 62 (02): : 245 - 253
  • [7] Surface Enhancement in Femtosecond Stimulated Raman Scattering
    Ploetz, E. C.
    Gellner, M.
    Schuetz, M.
    Marx, B.
    Schluecker, S.
    Gilch, P.
    XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY, 2010, 1267 : 88 - +
  • [8] Absolute Cross Sections of Liquids from Broadband Stimulated Raman Scattering with Femtosecond and Picosecond Pulses
    Burns, Kristen H.
    Srivastava, Prasenjit
    Elles, Christopher G.
    ANALYTICAL CHEMISTRY, 2020, 92 (15) : 10686 - 10692
  • [9] Resonant broadband stimulated Raman scattering in myoglobin
    Ferrante, C.
    Batignani, G.
    Fumero, G.
    Pontecorvo, E.
    Virga, A.
    Montemiglio, L. C.
    Cerullo, G.
    Vos, M. H.
    Scopigno, T.
    JOURNAL OF RAMAN SPECTROSCOPY, 2018, 49 (06) : 913 - 920
  • [10] Broadband stimulated Raman scattering spectroscopic imaging
    Fu, Dan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256